

Intermittence en turbulence d'ondes MHD

Grenoble, Juin 2015

Sébastien Galtier

with Romain Meyrand & Khurom Kiyani

Laboratoire de Physique des Plasmas École Polytechnique

JFM RAPIDS

journals.cambridge.org/rapids

Weak magnetohydrodynamic turbulence and intermittency

R. Meyrand¹, K. H. Kiyani^{1,2} and S. Galtier^{1,†}

¹Laboratoire de Physique des Plasmas, École Polytechnique, F-91128 Palaiseau CEDEX, France
²Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, UK

Front cover of JFM!

Journal of Fluid Mechanics VOLUME 770

CAMBRIDGE UNIVERSITY PRESS

Weak wave turbulence

- ✓ Statistical theory of weakly nonlinear dispersive waves
- ✓ Exact solutions can be found *via* the Zakharov transform

Weak MHD turbulence

$$\frac{\partial \mathbf{z}^{\mathbf{s}}}{\partial t} - s\mathbf{b}_{0} \cdot \nabla \mathbf{z}^{\mathbf{s}} = -\mathbf{z}^{-\mathbf{s}} \cdot \nabla \mathbf{z}^{\mathbf{s}} - \nabla P_{*}$$

$$s = \pm \qquad \mathbf{z}^{\pm} \equiv \mathbf{u} \pm \mathbf{b}$$

$$z_j^s(\mathbf{x},t) \equiv \iiint \hat{z}_j^s(\mathbf{k},t) \, e^{i\mathbf{k}\cdot\mathbf{x}} \, d\mathbf{k} = \iiint \left[\epsilon a_j^s(\mathbf{k},t) e^{is\omega_k t} \right] \, e^{i\mathbf{k}\cdot\mathbf{x}} \, d\mathbf{k} \,,$$

$$\frac{\partial a_j^s(\mathbf{k})}{\partial t} = -i\epsilon k_m P_{jn} \int_{\mathbf{R}^6} a_m^{-s}(\mathbf{q}) \, a_n^s(\mathbf{p}) \, e^{-is(\omega_k - \omega_p + \omega_q)t} \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \, d\mathbf{p} d\mathbf{q} \,,$$

where $P_{jn}(k) \equiv \delta_{jn} - k_j k_n/k^2$ is the projection operator

Resonance condition (3-wave interactions):

$$\begin{cases} \omega_k = \omega_p - \omega_q \\ \mathbf{k} = \mathbf{p} + \mathbf{q} \end{cases}$$

$$q_{\parallel}=0$$

 $q_{\parallel} = 0$ No cascade is expected along b_0

[Shebalin et al., JPP, 1983]

Weak turbulence phenomenology

Same phenomenology as IK but with anisotropy

$$au_{tr} \sim rac{ au_{eddy}^2}{ au_A} \sim rac{(\ell_\perp/z_\ell)^2}{\ell_\parallel/b_0} \sim rac{k_\parallel b_0}{k_\perp^2 z_\ell^2}$$

We thus obtain:

$$arepsilon \sim rac{z_{\ell}^2}{ au_{tr}} \sim rac{k_{\perp}^2 z_{\ell}^4}{k_{\parallel} b_0} \sim rac{k_{\perp}^2 (E(k_{\perp}, k_{\parallel}) k_{\perp} k_{\parallel})^2}{k_{\parallel} b_0} \sim rac{k_{\perp}^4 k_{\parallel} E^2(k_{\perp}, k_{\parallel})}{b_0} \,,$$

hence the anisotropic (axisymmetric) spectrum:

$$E^{\mathrm{Z}}(k_{\perp},k_{\parallel}) \sim \sqrt{arepsilon b_0} \, k_{\perp}^{-2} k_{\parallel}^{-1/2}$$

[SG et al., JPP, 2000]

Weak MHD turbulence theory

• Asymptotic equation: $(k_{\perp} >> k_{//} \text{ is assumed - transverse cascade})$

• Spectral solutions:

$$egin{align} E^\pm(k_\perp,k_\parallel) &= E^\pm(k_\perp) f_\pm(k_\parallel) \ E^\pm(k_\perp) \sim k_\perp^{n_\pm} \ \end{array}$$

EXACT SOLUTION

$$n_+ + n_- = -4$$

$$-3 < n_{\pm} < -1$$

Condition of locality

Direct ⊥ cascade is proved

• Nature of the 2D modes; origin of intermittency ??

Simulations / observations

Zakharov solution is found but an anomalous scaling is obtained in the non-stationary phase

[Thalabard et al., will appear]

Indirect signature in the Jupiter's magnetosphere

[Saur et al., A&A, 2002]

Direct numerical simulations

Parameters of the numerical experiences

✓ Case A: full equations

$$\partial_t z^{\pm} \mp b_0 \partial_{\parallel} z^{\pm} + z^{\mp} \cdot \nabla z^{\pm} = -\nabla P_* + \nu_3 \Delta^3 z^{\pm}$$

✓ Case B: $u(k_{\perp},k_{//}) = b(k_{\perp},k_{//}) = 0$ at each time step

$nx \times ny \times nz$	$E_{t=0}^u = E_{t=0}^b$	$ \mathbf{B}_0 $	$\int_V \mathbf{u} \cdot \mathbf{b} d\mathbf{x}$	$ u_3$
$1536 \times 1536 \times 128$	0.5	20.0	0	4.10^{-15}

✓ TURBO = solver for TURbulent flows with periodic BOundary conditions

Numerical results

$$\chi^{\pm} = rac{k_{\perp}z_{\perp}^{\pm}}{k_{\parallel}\,b_0} < 0.03 \quad orall \quad (k_{\perp},k_{\parallel}), \quad k_{\parallel}
eq 0$$

Condition for WT well satisfied

Spectrogram of the magnetic energy at $k_1 = 64$

PDFs of the Elsässer field increments δz^+

Case A: strong intermittency is found

Case B: almost no intermittency

$$S_p = \langle (\delta z^+)^{p/2} \rangle \langle (\delta z^-)^{p/2} \rangle = C_p \ell_{\perp}^{\zeta(p)}$$

$$\zeta(p)$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

A Log-Poisson law is derived:

$$\zeta(p) = \frac{p}{8} + C_0 - C_0 \left(1 - \frac{3}{4C_0}\right)^{p/2}$$
Co-dimension:
$$C_0 = 1.08$$
Current sheets

Conclusion

[Meyrand et al., JFM-R 770, R1, 2015]

- ✓ Intermittency is found in weak MHD turbulence
- ✓ This intermittency can be modelled with a log-Poisson law
- ✓ The 2D modes play a central role *via* the dissipative structures
- ✓ Main application: solar/stellar magnetic turbulence