Impact of gas turbulence on the instability of a two-phase mixing layer

Sylvain MARTY (doctorant) Alain CARTELLIER, <u>Jean-Philippe MATAS</u>

Liquid atomization

Gas assisted atomization used to strip droplets out of a continuous liquid stream:

smaller droplets = better combustion

Cryogenic engines

Air Fuel

Turboreactors

Past theses at LEGI: L. Raynal (Hopfinger & Villermaux), P. Marmottant (Villermaux), M. Hong (Cartellier & Hopfinger), F. Ben Rayana (Cartellier & Hopfinger)

Marmottant & Villermaux (JFM 2004)

Liquid atomization

Shear instability

Thesis of Sylvain Marty (co-adv. with A. Cartellier) ANR VAA

Mixing layer configuration

Mechanism?

• Raynal (1997) and Marmottant & Villermaux (JFM 2004):

Simple temporal inviscid stability analysis accounts for experimental scaling of wavelength/frequency:

$$\begin{array}{ll} \lambda & \sim (\rho_{\rm I}/\rho_{\rm g})^{1/2}\delta_{\rm g} & \text{and} & {\rm f} \sim (\rho_{\rm g}/\rho_{\rm I}){\rm U}_{\rm g}/\delta_{\rm g} \\ \\ \text{Basically:} & {\rm d}({\rm ec})/{\rm dt} = \rho_{\rm g}{\rm u}_{\rm i}{\rm u}_{\rm j}{\rm D}_{\rm ij} \\ & \rho_{\rm I}\,{\rm u}^2\omega = \rho_{\rm g}\,{\rm u}^2{\rm Ug}/\delta_{\rm g} \end{array}$$

- Temporal viscous stability analysis fails miserably (wrong f, λ , velocity etc): why does **simpler inviscid approach** succeed in the 1st place??
- Answer:
 - viscous mode + absolute instability triggered by confinement (finite liquid and gas stream thicknesses)
 - But pinch point at "low" wavenumber: perturbation fed by Reynolds stresses inviscid mechanism

Additional issue: Hidden parameter?

Experiments by different users on mixing layer experiment show:

- Frequency ~ Ug^{3/2} at large
 $$\begin{split} M = \rho_g V_g^{-2} / \rho_l V_l^{-2} \\ \text{ consistent with } f \sim (\rho_g / \rho_l) U_g / \delta_g \\ \text{ and } \delta_g \sim U_g^{-1/2} \end{split}$$
- But different prefactors!

FIGURE 1. Experimental frequency versus gas velocity for various sets of experiments with M > 4. Data obtained by: +, Raynal (1997) M = [4.2:2115]; \circ , Marmottant & Villermaux (2004) M = [4:108]; ×, Ben Rayana (2007) M = 16; and *, Matas, Marty & Cartellier (2011) $M = \rho_g U_g^2 / \rho_l U_l^2 = [5:14]$. The most unstable frequency is shown to scale as $U_g^{3/2}$ for large M.

Reproducibility??

Hidden parameter?

Variability in our own experiments as well!!!!!!

- + : Raynal (1997)
- o: Marmottant & Villermaux (2004)
- x : Ben Rayana (2007)
- * : Matas, Marty & Cartellier (2011)
- ▲ : Fuster et al (2013)

Hidden parameter?

- We measure the frequency of the most unstable mode for two versions of the experimental set-up, for the same experimental point, U_g = 27 m/s and U_l = 0.28m/s.
 - Older version used by F. Ben Rayana \rightarrow Manip 1

Optical probe measurement \rightarrow f=42 Hz

• New set-up built by S. Marty \rightarrow *Manip* 2

Optical probe measurement \rightarrow f=27 Hz

Role of velocity profile?

- Measurement of velocity profile (hotwire). Velocity in bottom channel is fixed to Ug_{bottom} = 4.2 m/s (same Re as in air/water experiment where U₁ = 0.28 m/s)
 - Mean velocity profile very similar
 - Much larger RMS value for manip 1 (older set-up)!

Role of porous plate!

• We insert **old** porous plate on **new** experimental set-up

→ Frequency shifted from 27Hz to 42Hz !

Forcing of turbulence

Two methods:

- Passive forcing (obstruction of varying height H)
- Active forcing (pulsed jet)

FIG. 3. (color online) Hot-wire velocity profiles for $U_G = 27 \text{ m/s}$ and varying obstruction heights H: o: H = 0; \Box : H = 5.6 cm; o: H = 8 cm; a) Mean velocity profile. b) Turbulence intensity u_{rms}/U_G .

Forcing of turbulence

- Frequency increases with turbulence intensity whatever the forcing method
- All data collapse when plotted as a function of u'/U_G

Impact on wavelength

u'/U = 2.3% f= 26Hz and λ ~ 3.4 cm

u'/U = 9% f= 53Hz and λ ~ 1.6 cm

- Wavelength decreases with turbulence intensity

- Wave velocity
$$\approx \text{constant} \approx \frac{\sqrt{\rho_G}U_G + \sqrt{\rho_L}U_L}{\sqrt{\rho_G} + \sqrt{\rho_L}}$$

Stability analysis?

Assumption: turbulent intensity modelled via Newtonian eddy viscosity, and injected in spatiotemporal stability analysis:

$$\rho u_{\rm rms}^2 = \mu_{\rm g\,turb} U_{\rm g} / \delta_{\rm g} \longrightarrow u_{\rm rms} / U_{\rm g}^2 = \sqrt{\frac{\nu_{g\,turb}}{U_g\,\delta_g}}$$

★ : stability analysis prediction

All other symbols: experimental data

Impact of turbulence

- Variability in past experiments related to variability of turbulence level in gas injection channel
- Increasing velocity fluctuations in gas phase leads to increase of frequency/wavenumber
- Effect is captured via simple Newtonian eddy viscosity model
- Questions:
 - Role of interface velocity
 - More sophisticated model for eddy viscosity? (cf O Naraigh et al JFM 2013)
 - Impact for application...?