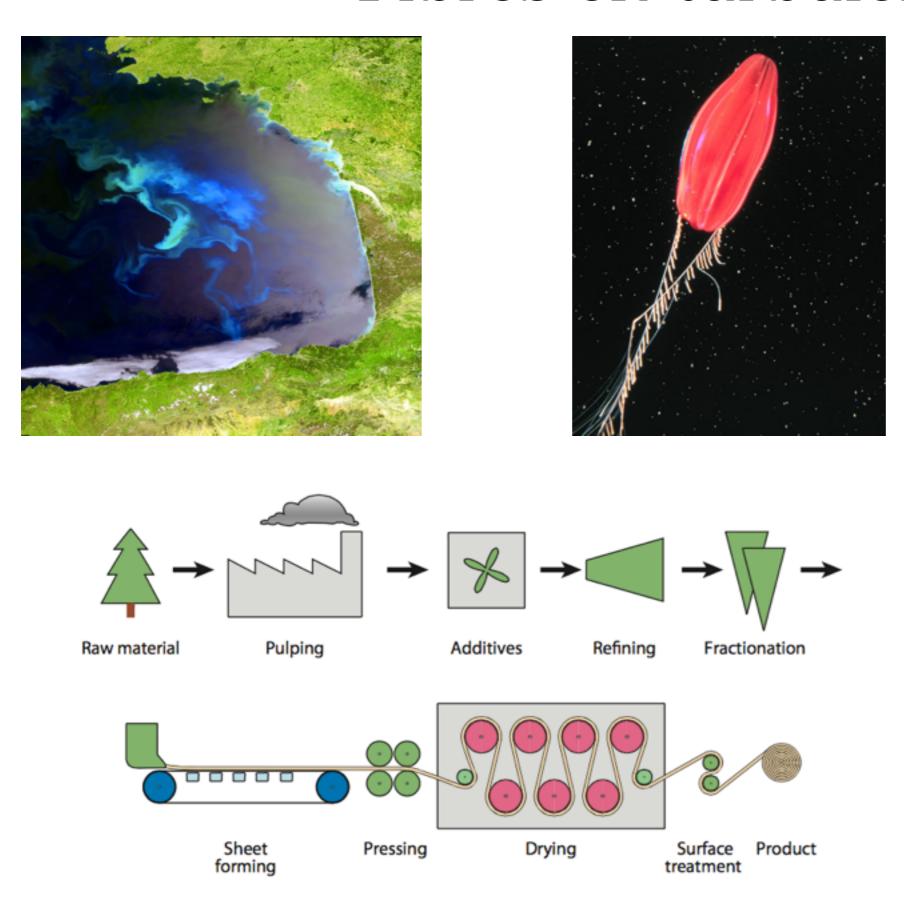


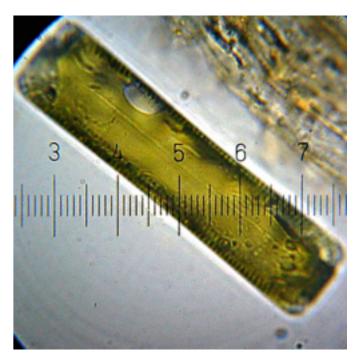
Fibre flexible en turbulence

Gautier Verhille, Patrice Le Gal

IRPHE

Fibres en turbulence



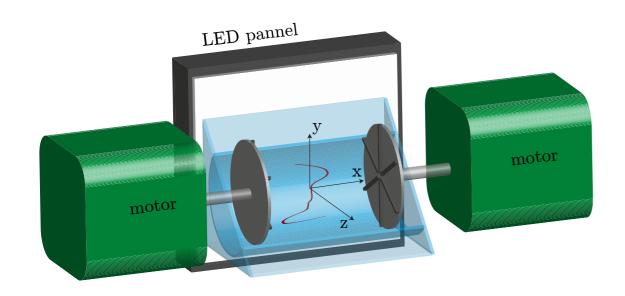


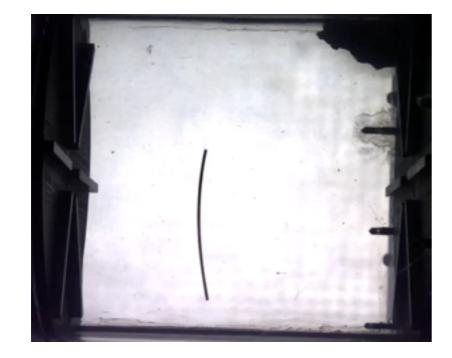


Questions posées

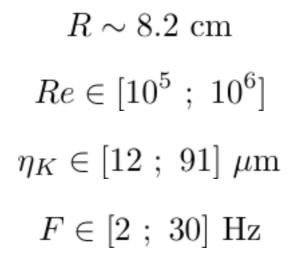
- Quand doit on prendre en compte la flexibilité d'une particule ?
- Comment se déforment ses particules ?
- Quel est le rôle des déformations sur le transport ?

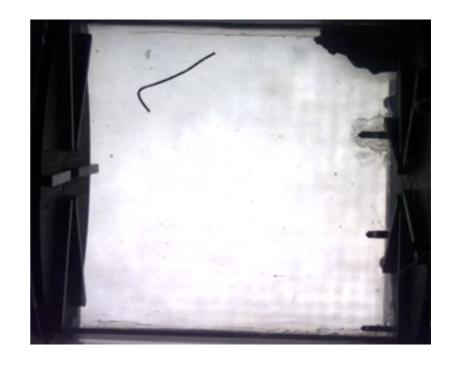
Déformation d'une fibre dans un écoulement turbulent





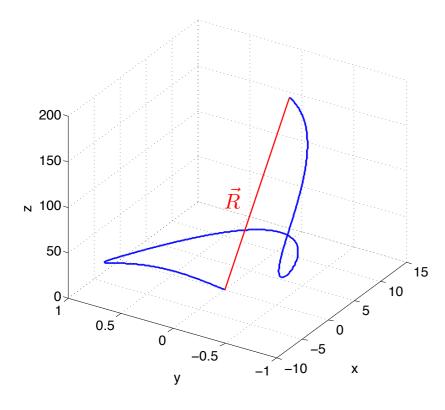
F=2 Hz





F=20 Hz

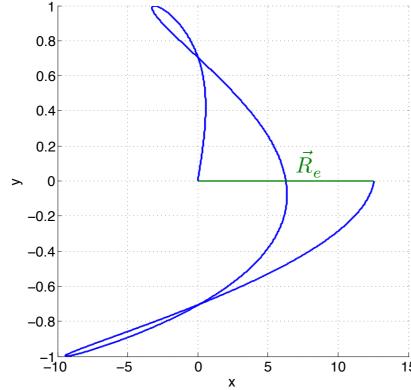
Evolution du vecteur bout à bout



Correction due à la projection

Norme

$$\langle R_e^2 \rangle = \left\langle \frac{1}{4\pi} \int_{\varphi=0}^{\varphi=2\pi} \int_{\theta=0}^{\theta=\pi} R^2 \sin^2 \theta (\cos^2 \varphi + \sin^2 \varphi) \sin \theta d\theta d\varphi \right\rangle$$

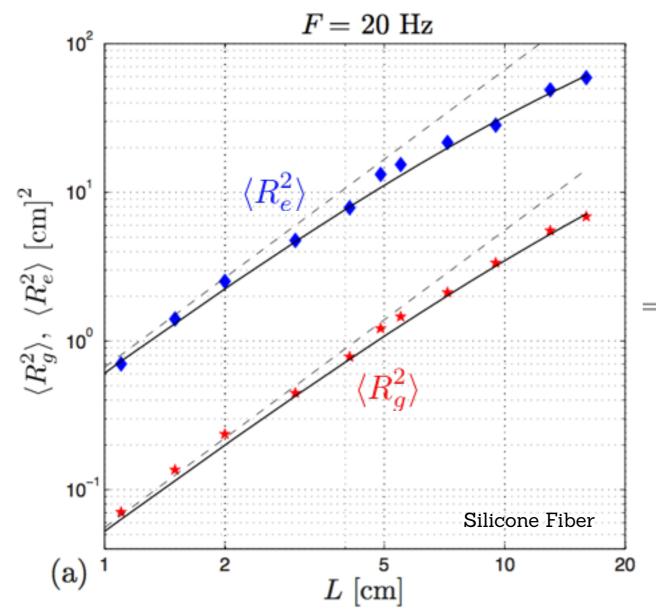


$$\langle R_e^2 \rangle = \frac{2}{3} \langle R^2 \rangle$$

Rayon de gyration

$$R_g^2 = \frac{1}{L} \int_0^L (\vec{r} - \vec{r}_{cm})^2 ds$$

Evolution du vecteur bout à bout



Correction due à la projection

Norme

$$= \left\langle \frac{1}{4\pi} \int_{\varphi=0}^{\varphi=2\pi} \int_{\theta=0}^{\theta=\pi} R^2 \sin^2\theta (\cos^2\varphi + \sin^2\varphi) \sin\theta \mathrm{d}\theta \mathrm{d}\varphi \right\rangle$$

$$\langle R_e^2 \rangle = \frac{2}{3} \langle R^2 \rangle$$

Rayon de gyration

$$R_g^2 = \frac{1}{L} \int_0^L (\vec{r} - \vec{r}_{cm})^2 ds$$

Comment décrire le régime non linéaire ?

Description de la transition

Equation d'elastica

$$\underbrace{\rho_f S \partial_{tt} y + \alpha \partial_t y + E I \partial_{ssss} y}_{\text{Elasticit\'e}} = \underbrace{\alpha u + F_H}_{\alpha} \qquad \alpha \sim \eta$$

Equation de la dynamique des polymères

Hallatschek et al., PRE 2007

$$\rho S \partial_{tt} y + \eta \partial_{t} y + E I \partial_{xxxx} y = \xi$$

Turbulence

Polymère

forçage = fluctuation turbulente

forçage = fluctuation thermique

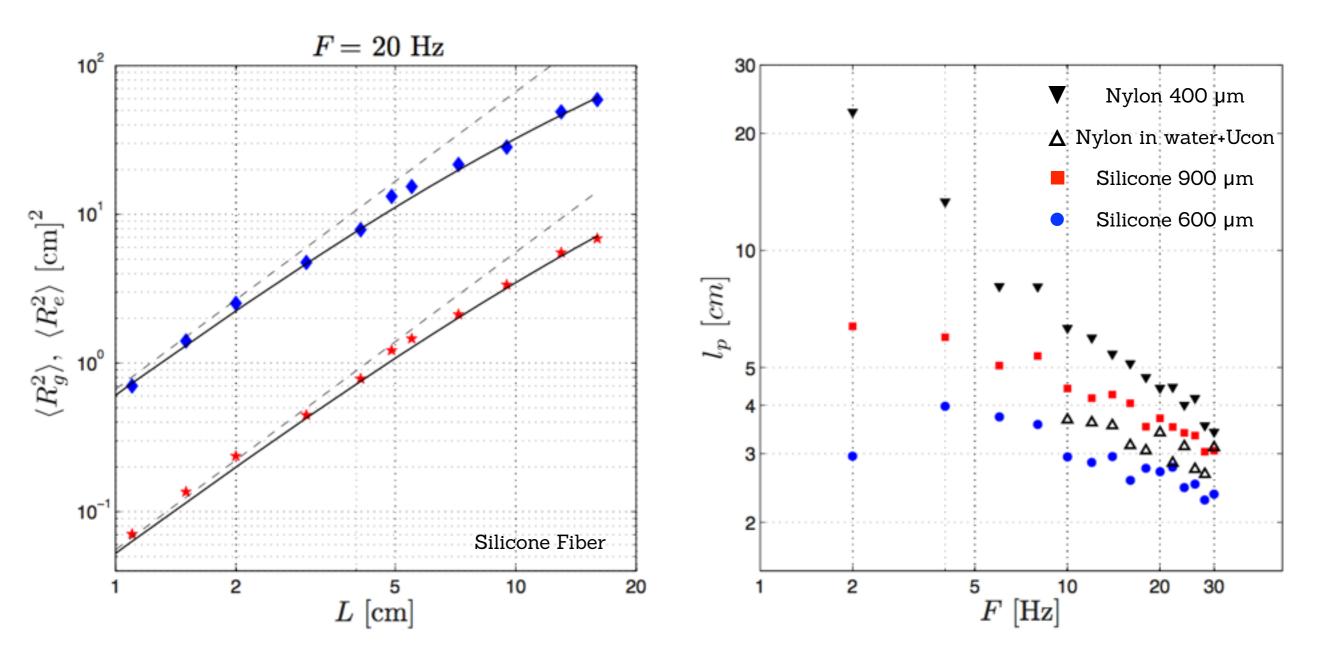
Modèle des polymères semi-rigides

modèle de polymère court (ADN, ARN, ...) $\langle \vec{r}(s) \cdot \vec{r}(s+\ell) \rangle = e^{-\ell/\ell_p}$

$$\langle \vec{r}(s) \cdot \vec{r}(s+\ell) \rangle = e^{-\ell/\ell_p}$$

$$\langle R^2 \rangle = 2L\ell_p - 2\ell_p^2 \left(1 - e^{-L/\ell_p} \right)$$

Evolution de la longueur de persistence



Fluide	visc. dyn. [mPa.s]	densité	Re
eau	1	1	10 ⁵ -1.5•10 ⁶
eau+Ucon	100±20	1,045	5•10 ³ -1.5•10 ⁴

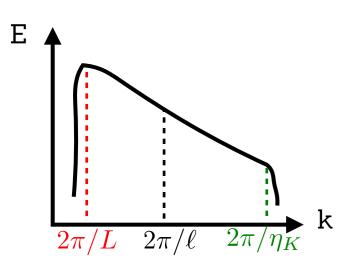
Modélisation de la longueur de persistence

Analogie thermique

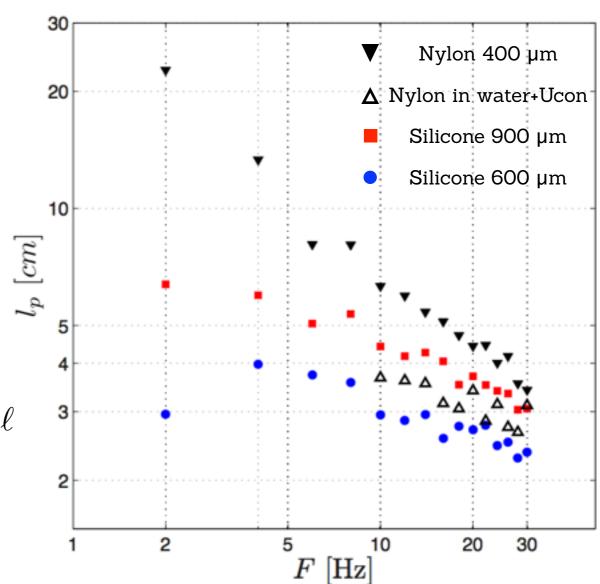
En théorie des polymères : Energie élastique = Energie thermique

$$\frac{EI}{\ell_p} = k_B T$$

En turbulence



Tourbillon de taille ℓ doivent avoir assez d'énergie



$$\frac{EI}{\ell} = \frac{1}{2}\rho\ell^3 u_\ell^2 \qquad u_\ell = \epsilon^{1/3}\ell^{1/3} \qquad \ell = \left(\frac{2EI}{\rho}\right)^{3/14} \epsilon^{-1/7}$$

Longueur indépendante de la viscosité

Modélisation de la longueur de persistence

L'influence du forçage

$$\rho_f S \partial_{tt} y + \alpha \partial_t y + E I \partial_{ssss} y = \alpha u + F_H$$

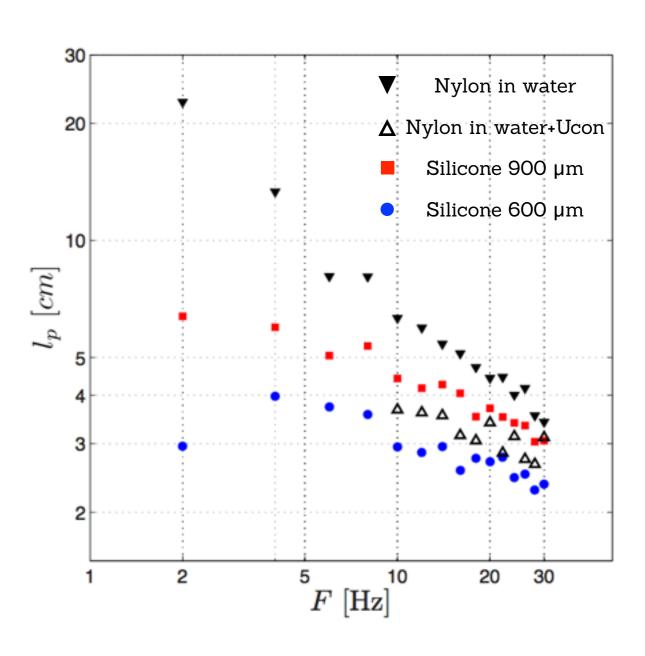
$$\alpha \sim \eta$$

Temps de relaxation

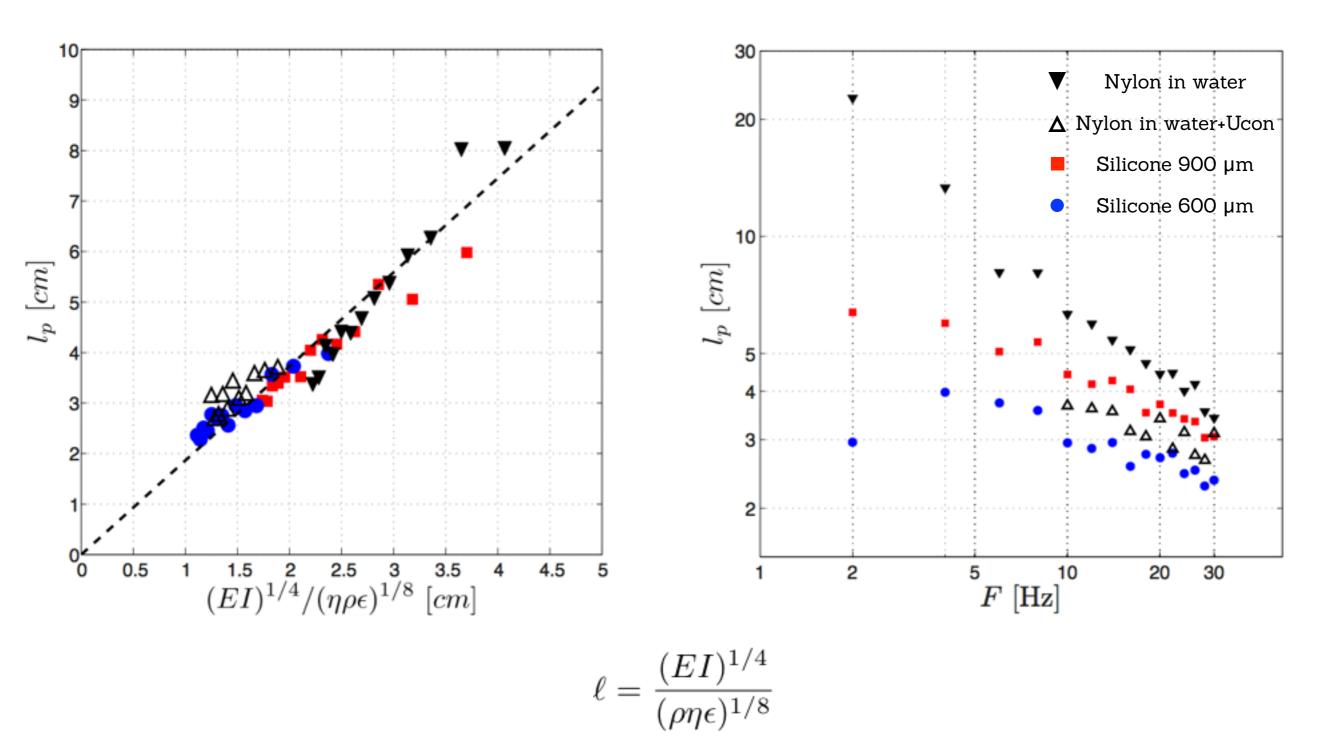
$$\tau_{el} = \alpha \ell^4 / EI$$

Equilibre des puissances

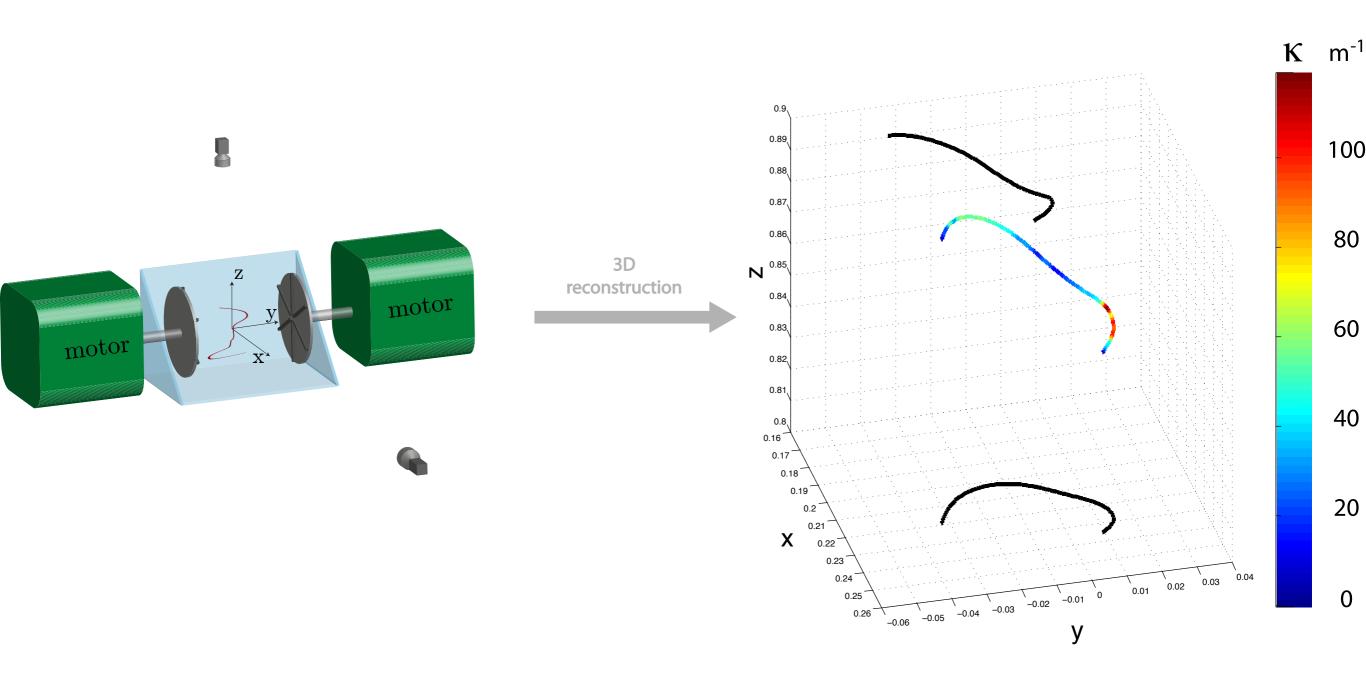
$$\rho \ell^3 \epsilon = \frac{(EI)^2}{\alpha \ell^5} \qquad \qquad \ell = \frac{(EI)^{1/4}}{(\rho \eta \epsilon)^{1/8}}$$



Modélisation de la longueur de persistence



Reconstruction 3D

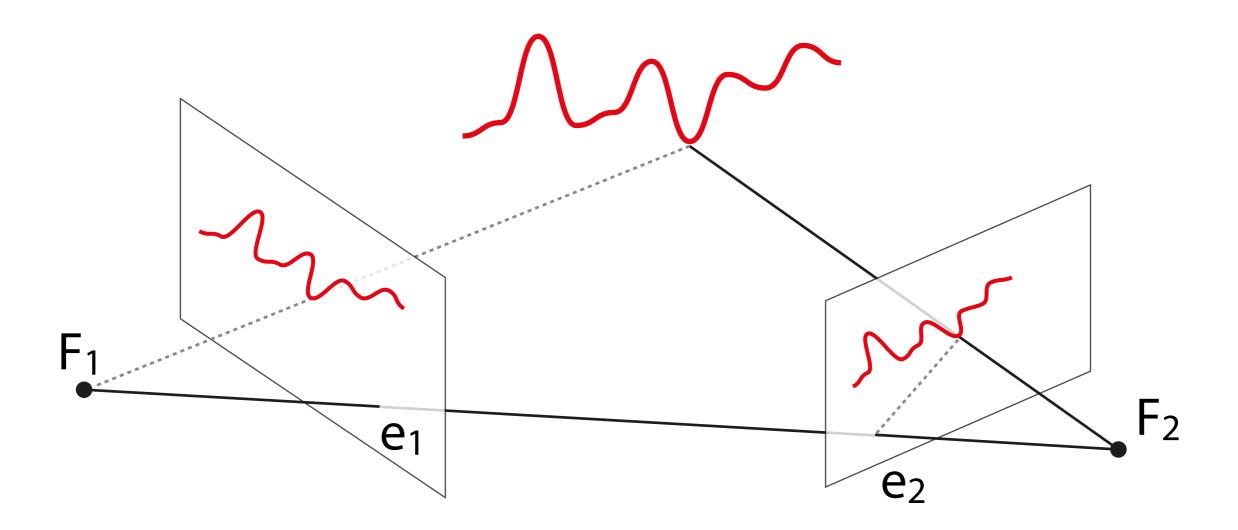


Collaboration avec A. Bartoli

Reconstruction 3D: principe

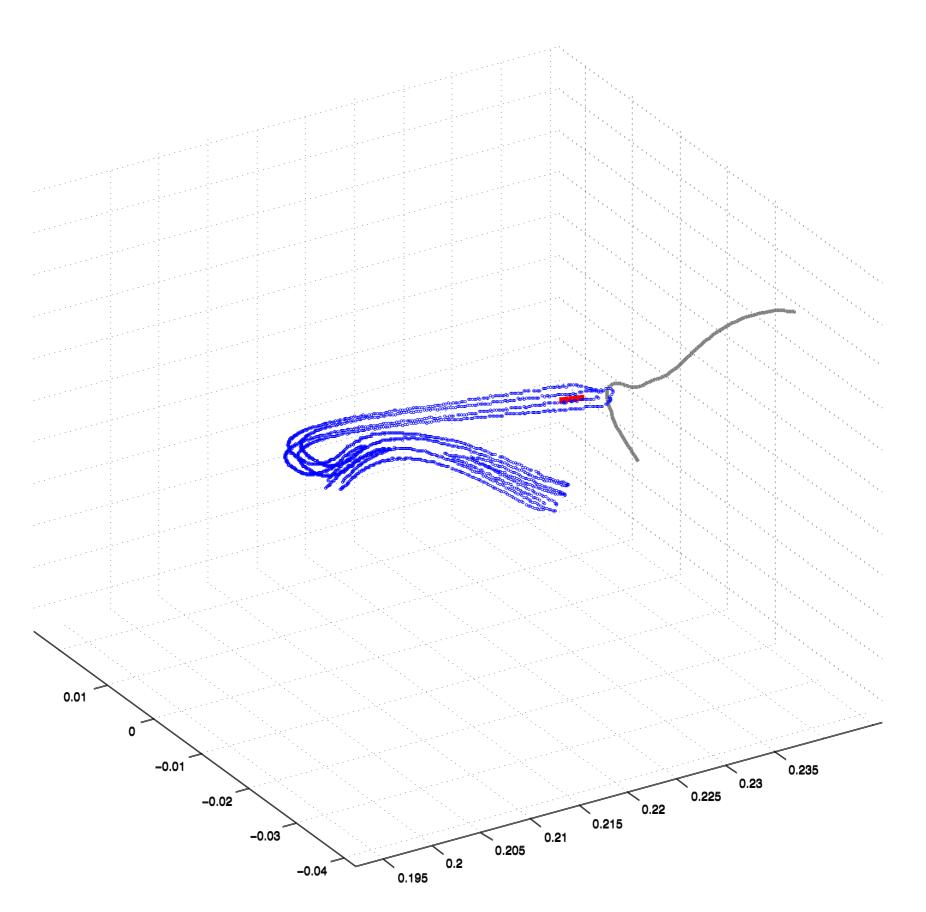
- Calibration des caméras : paramètres de pose et paramètre interne (modélisation pinhole)
- Correction des aberrations géométriques des images + détection des contours
- Triangulation

Reconstruction 3D: triangulation

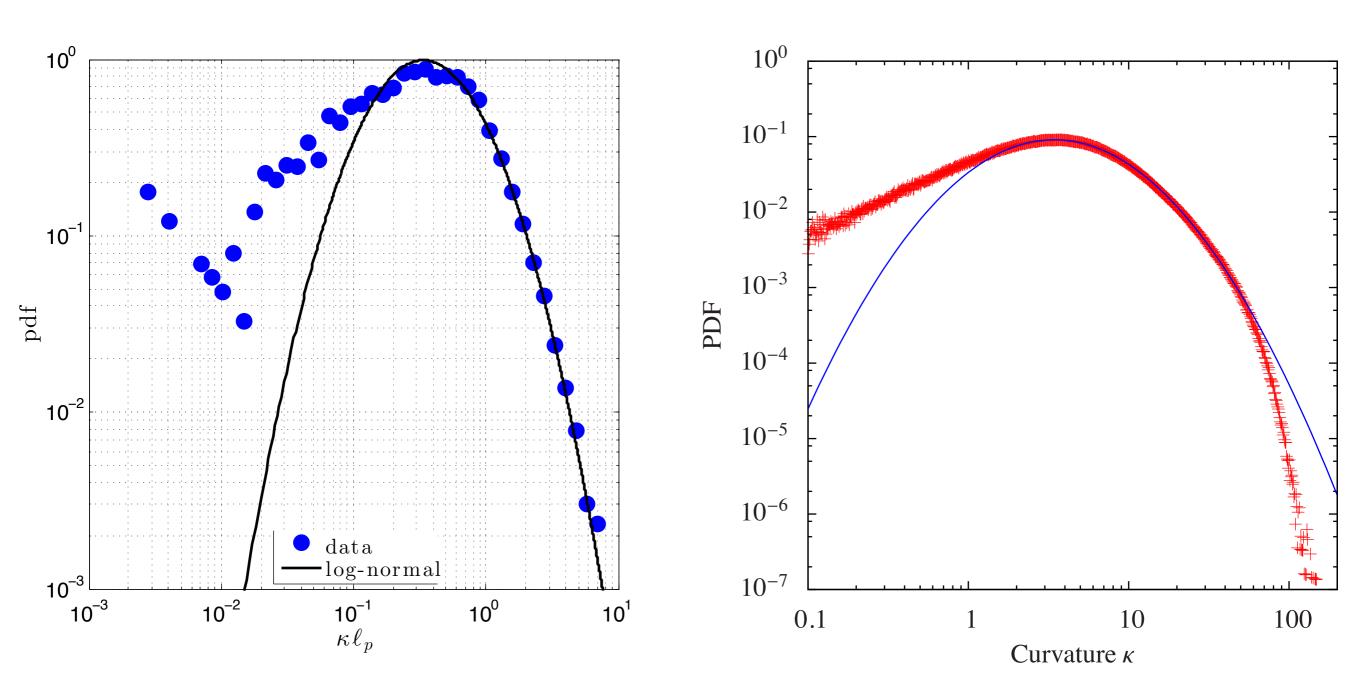


Intersection entre la droite épipolaire et le contour de la fibre

Reconstruction 3D : identification de la fibre



Exemple de mesure : distribution de la courbure



Conclusion/perspectives

- Mise en évidence d'une transition rigide/flexible
- Reconstruction 3D des fibres

- Interprétation des statistiques mesurées
- Dynamique de relaxation des contraintes
- Influence sur le transport de particules