Study of low-frequency unsteadiness in shock/turbulent boundary layer interaction using LES database

G. Aubard, J.-C. Robinet and X. Gloerfelt

DynFluid Laboratory - Arts & Métiers-ParisTech - 75013 Paris, France

GDR Turbulence (GDR 2865 CNRS) 15-17 october 2012 Poitiers, France

• □ > • • □ > • □ > • □ >

Context & Objectives

- **Objectives** : to understand the dynamics of the interaction between an oblique shockwave and turbulent boundary-layer developing on flat plate.
- Under certain conditions, the interaction exhibits a self-sustained oscillations.

- High frequency activities : $t_{turb} \simeq \delta_0 / U_\infty$ (turbulence origin) ;
- Medium frequency activities : $t_{sep} \simeq 10 t_{turb}$ (mainly located in separated zone);
- Low frequency activities : $t_{int} \simeq 100 t_{turb}$ (oscillations of the separated shock).

Numerical Tools

To investigate the self-sustained oscillations in SWTBLI a compressible Large Eddy Simulation is used.

- Finite-difference scheme with good spectral properties (DRP scheme) (Bogey & Bailly (2004));
- Explicit time integration : low-storage optimized six-step Runge-Kutta scheme ;
- The high-order explicit filtering (Bogey & Bailly (2004));
- Inflow condition : Synthetic-Eddy-Method (Pamiès et al. (2009));
- Shock capturing : ANSF method (Bogey et al. (2009));
- Nonreflecting boundary conditions (Thompson (1987));
- Parallel solver in 3 directions (MPI method).

Numerical Parameters

- Pirozzoli & Grasso (2006) case
- $M_{\infty} = 2.25$ and $Re_{\theta} = 3725$;
- Angle of flow deflector : $\phi = 8^{\circ}, 9^{\circ}$.

Runs	φ	L_x/δ	L_y/δ	L_z/δ	Δx^+	Δy^+	Δz^+	N _x	Ny	Nz
SWTBLI1	8°	58	17.6	2.94	40-9-40	1.8	14	1100	250	150
SWTBLI2	8°	26	15.1	3.5	42	1.7	17	400	200	154
SWTBLI3	9°	26	15.1	3.5	42	1.7	17	400	200	154

	SWTBLI1	SWTBLI2	SWTBLI3	
$\Delta t U_{\infty} / \delta$	0.0024	0.0023	0.0023	
Time integration (in U_{∞}/δ)	1200	920	7000	
number de traversees de domaine	20	36	280	
number of proc.	294	32	32	
CPU time	200000h	27000h	220000h	
Recovery time	\simeq 15 days	\simeq 16 days	\simeq 4 months	

\hookrightarrow Only SWTBLI-3 is discussed in this talk.

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Wall Pressure Analysis

- Definition of Strouhal number $St_L = fL_{int}/U_1$
- 41600 plans wall pressure recorded every 50∆t
- resolution $St_{L_{max}} = 18$ and $St_{L_{min}} = 0.00085$

premultiplied PSD fE(f) of the wall pressure (arbitrary scale)

 \hookrightarrow broad-band pressure fluctuations at the foot of the separated shock \hookrightarrow low-frequency activity centered on $St_L = 0.03$

What are the spatial supports of the observed frequencies?

- Koopman mode decomposition is an interesting tool to answer this question.
 - Nonlinear,
 - One mode by frequency,
 - Dynamic Mode Decomposition (Schmid, JFM, 2010).

ъ

・ロト ・雪 ト ・ ヨ ト ・

Koopman modes

eigenvalues and amplitudes

- almost all eigenvalues on the unit circle : system statistically steady;
- frequencies obtained in accordance with the linear spectral analysis;

Spatial support of modes

Low-frequency modes at $St_L = 0.018$

Iso-u (dotted sonic line)

Iso-u with mean flow

うつん 川 エー・エー・ エー・シック

- spatial support localized in upstream part of decelerated area,
- low frequency mode dynamics : cyclical breathing of decelerated area associated with a back-and-forth the separated shock.
- The shock of separation is a slave of the decelerated area (shear-layer and separated zone).

Spatial support of modes

modes at medium and high frequencies

 $St_L \approx 0.41$

 $St_L \approx 1.1$

- high and low frequencies activities are decoupled,
- selectivity of the shear-layer at medium frequencies,
- convective nature of the medium and high frequencies.

What is the dynamics of the separated zone?

- Study of different filtered dynamics at low and medium frequencies :
 - Dynamics of separated point,
 - Dynamics of reattachment point,
 - Evolution of the mass of the recirculation zone.

ъ

・ロト ・雪 ト ・ ヨ ト ・

Dynamics of the separated zone - (1)

Separated and reattachment points

- Dynamics of separated zone splited in 2
 - The first part is mainly dominated by low-frequency;
 - The second part by low and medium-frequency.

Dynamics of the separated zone -(2)

Mass of the separated zone - (1)

- no regular low-frequency activity (broadband acticity).
- Inside to separated zone : low and medium frequency activities.

< □ > < 同 > < 回 > < 回

Dynamics of the separated zone -(3)

Mass of the separated zone - (2)

no filtering (------), low-pass filtering with $St_{cut} = 0.5 (---)$, $St_{cut} = 0.2 (---)$, $St_{cut} = 0.05 (---)$

- Dynamics of the separated zone at medium frequency.
- Modulated dynamics at low-frequency.

What kind of structures is associated with this dynamics cycles ?

Dynamics of the separated zone - (4)Low-pass filtered field with a cutoff $St_{cut} = 0.1$ 0.02 0.015 0.0 0.005 135 140 175 130 145 150 $\frac{155}{tU_1/L}$ 160 165 170 180

4 filtered fields describing a low-frequency cycle associated with $St_L = 0.05 (- - -)$

4 non-filtered fields describing a medium-frequency cycle associated with $St_L = 0.2$ (- - -)

Summary of main effects

- Generation and growth of the adverse gradient pressure which generate the interaction zone,
- 2
- This interaction zone is continuously forcing by upstream turbulence : $E(\kappa, \omega)$,
- Separated shock is a low-pass filtering, perturbations is amplified crossing the shock, and the shear-layer is deflected.

The shear-layer and separated zone develop instabilities which limit $oldsymbol{(1)}$.

and 4 Two opposing effects !

The dynamics is the result of the continuous forcing and these two opposite fields
affects.
affects.

Outlooks

• Summary :

- The spatial support of a typical LF mode is concentrated in the first part of the recirculation bubble, mainly along the shear-layer.
- The low-frequency dynamics is mainly localized (energetically) near the separated shock foot and in separated zone;
- The dynamics of separated zone is mainly dominated by medium frequency : $St_L \in [0.1; 0.5]$;
- The low-frequency dynamics is a modulation of medium frequency dynamics;
- Two antagonist effects : Incident shock creates and increases the adverse pressure zone and the instabilities that develop in this region contribute to the reduction of the area.

• Future work :

- Detection of structures responsible for medium frequency dynamic.
- Characterization of scales (time, length) controlling low-frequency dynamics.
- Analysis of 3-D structure of the flow.

