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Reduction of mixing

• Is homogeneous turbulence relevant ? MAY BE ...

• Is the compressibility always stabilizing in homogeneous turbulence ? NO !
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Simplified problem and strategy

• An overall agreement: Role of pressure fluctuation, mollification of pressure effects

with compressibility

• But opposite effects looking at linear ‘rapid’ and nonlinear ‘slow’ pressure-strain rate

terms in RSM. Possible controversy ?

• Investigation of the linear response : a crucial difference between irrotational (e.g.

axial compression) and rotational (e.g. plane shear) flows

-) Go back to linear theory (SLT) in the incompressible case

-) Introduce new couplings in isentropic SLT ... and explain
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Helmholtz decomposition - incompressible case

V (x, t) = V
(sol) + V

(dil) = V
(tor) + V

(pol)

︸ ︷︷ ︸
V (sol)

+V
(dil)

Applied to strictly incompressible Navier-Stokes equations:

∂u

∂t
+ V + ∇p = 0, ∇·u = 0

∂u

∂t
+ V

(sol) = 0, ←
∂ω

∂t
= ...

,

V
(dil) + ∇p = 0, ← ∇

2p = ..

Implicitely solve Poisson, Biot-Savart, and related equations ?
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Solenoidal projection - linear and nonlinear terms

Projection operator in 3D Fourier space Pij = δij −
kikj

k2 , V̂
[sol)

= PV̂

(
∂

∂t
+ νk2

)
û(k, t) + Pω̂ × u = 0, k·û = 0

Add a mean flow in a rotating frame

u→ Ax︸︷︷︸
U

+u, ω → 2Ω + ω, so that

˙̂u(k(t), t) + νk2
û + MAû + P(2Ω× û) = −Pω̂ × u = 0

Local — up to k(t) — and algebraic solution of the linear (left) part (SLT). Solenoidal

projection (mediated by pressure fluctuation) for both linear and nonlinear terms via

kikj/k2 (origin of rapid and slow contributions in subsequent statistical equations)
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Basic mean flow

Ω2 − S2, < 0, 0, > 0
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Specific signature of linear response

• Conventional comparison between a ‘linear’ (inverse) time-scale S and a nonlinear

one τNL = u′/ℓ ? no universality

• Very different role of S in the basic linear operator, with or without production, and

modulation by an angular term in Fourier space, as pure rotation 2Ω, specific

±ı2Ω cos (̂k,Ω), very different from pure shear, due to solenoidal projection.

• Very different role in equations for statistical quantities, second-order single-point

and two-point correlations
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Very different domain of validity of the linear (SLT) solution, or nonlinear versus linear

• Isotropic compression-dilatation: The nonlinear term can be more rapid than the

linear one ! No anisotropy, no significant explicit role of pressure.

• Pure rotation: Very delayed nonlinearity, inertial wave turbulence at Ωt ∼ Ro−2

• Pure shear: Conventional (Hunt etal) view roughly valid: Validity of RDT

St ∼ 1− 10, depending of initial ‘shear rapidity’ SτNL (inverse of a Rossby

number)

Limitations of crude dimensional analysis, comparing S (spherical strain, anisotropic

strain, shear), 2Ω, N (stable and unstable density stratification)
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Irrotational vs. irrotational mean flow

From RDT (Batchelor & Proudman 1954) for irrotational strain to RDT (SLT) for

rotational mean flow (Moffatt 1967, Sagaut and CC book 2008)

Helmholtz equation (inviscid) ω̇i = ∂ui

∂xj
ωj Integral form (Kelvin)

Linearization around Aij = Sij + ǫinjWn

ω̇i = Aijωj︸ ︷︷ ︸
,

+
∂ui

∂xj

Wj

︸ ︷︷ ︸
/
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Compressibility. Isentropic SLT

• Mean flow parameters U = Ax, P (t), ρ(t),

a2(t) = P/(γρ)

• Minimal set of dependent variables (fluctuating)

-) Incompressible (u1, u2, u3, p)→ u(tor), u(pol) (u(dil) = 0, p slaved to them)

-) Isentropic case u(tor), u(pol), u(dil), u(p) ∼ p/(ρa)

• Assumptions ṡ = 0, p/P ≪ 1
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Toroidal-poloidal-dilatational decomposition

û(k) = u(1)
e

(1) + u(2)
e

(2)

︸ ︷︷ ︸
sol.

+u(3)
e

(3)
︸ ︷︷ ︸

dil.

GDR turbu, Poitiers 15 octobre, 2012
Claude Cambon



12

Symmetric mean strain : effect of rapid axial compression

Two relevant

limits, isentropic homogeneous RDT + (DNS), monotonic Destabilization

• Pressure-released RDT ui(x, t) = F−1
ji (X, t, t0)uj(X, t0) (Debiève as well)

• Solenoidal RDT ui(x, t) =
(
F−1

ji (X, t, t0)uj(X, t0)
)(sol)

Helmholtz

decomposition. Pure addition of solenoidal and dilatational response.
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More general case with mean vorticity

• In search for applications : compression ramps (suggested by Nagi Mansour, CTR,

1993), restarted collaboration with L. Jacquin, Pierre, Tom (here) ...

• Interpretation from RSM : the “rapid” pressure-strain rate inhibits the “production”→

mollification of pressure means destabilization in the linear (RDT) limit

• A more complex answer using the decomposition toroidal - poloidal - dilatational for

the velocity. (Craya-Herring in Fourier space) + pressure + entropy.
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Feedback from dilatational mode induced by the mean vortici ty

A linear system of four equations for toroidal-poloidal-dilatational-pressure disturbance

mode : A tensorial Green’s function.

• quasi-isentropic (viscous terms for numerics) RDT

• Gradient Mach number : S and ak→Md(k) = S/(ak), with Mg = (SL)/c

• Breaking of acoustical equilibrium E(dil) = E(pres) by the mean shear effect

• A linear feedback from dilatational to poloidal, induced by mean vorticity (e.g. pure

plane shear): a key effect for stabilizing ...

• ... even if explicit dilatational terms are marginally relevant ?
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Homogeneous shear flow

• Full DNS / RDT : cross-over about St = 4 for destabilizing to stabilizing effect.

• The feed-back from dilatational to poloidal mode is essential for predicting the
“stabilization” in the linear limit
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Coupling in compressible RDT for pure shear: Details

u̇(1) + S
K3

k(t)
u(2) = S

K3k2(t)

K⊥

u(3)

k(t)
(1)

˙(
ku(2)

)
= −S

K1

K⊥

k(t)u(3) (2)

˙(
u(3)

k(t)

)
= 2S

K1K⊥

k4(t)
k(t)u(2)

− a0u
(4) (3)

u̇(4) = a0k(t)u(3) (4)
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RSM modelling ?

Mollification of pressure yields

-) linear pressure-strain decreased→ production increased (e.g. basic deviatoric of

production, LRR): Mt and Mg corrections ? Little hope to reproduce the complex SLT,

which allows possible stabilization.

-) Nonlinear pressure-strain decreased→ production decreased (e.g. return-to-isotropy,

feeding vertical component in pure shear): e.g. a simple factor (e.g. Heinz)

e−CMg

On tue le mauvais cochon ? en ‘tuant’ l’ effet de pression dans le terme ‘rapide’ (eg.

Girimagi etal., Tacker etal.)

GDR turbu, Poitiers 15 octobre, 2012
Claude Cambon



18

Discussion. Why stabilizing ?

• Mollification of pressure-strain : opposite effects looking at “rapid = linear” and “slow

= nonlinear” pressure-strain tensors Depletion of nonlinearity instead of

compressibility effect ?

• The SCALAR Green’s function for fluctuating pressure is only a part (Thacker et al.

2006) Role of the TENSORIAL Green’s function including both pressure effect and

feedback from dilatational to poloidal (vertical) (Simone et al. 1997).

• new progress in complete quasi-analytical linear solution. Initialization ? ⁀Invariant

term combining poloidal and pressure component. See the context of accretion discs

in astrophysics, shearing box, non-modal growth Chagelishvili etal.

• Relevance of the pressure-less limit (easy to obtain in RSM) ?
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Complements, to be discussed further ?
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Modification of pressure Green’s function: Not the whole sto ry

• Example of incompressible turbulence in a rotating frame: -) Poisson equation for

pressure with conventional time-independent Green’s function∇2p = f
... but f = 2Ω·ω ...

-) and eventually p satisfies a propagation equation (inertial waves !)
∂2

∂t2
∇2p + 4Ω2 ∂p

∂x2
‖

= 0

• Isolating an operator with a ‘frozen’ right-hand-side can yield wrong results

• Incorporate all linear couplings via a full RDT tensorial Green’s function is better
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Qualitative effect of shear
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History of RDT, cornerstones

see the cover of our SC book ... ! Babel tower, at least three communities

Kelvin mode↔ Rogallo space↔ Shear wave

• Ideas more than hundred years ago (e.g. Kelvin), then Taylor, Prandtl and many

others ...

• Batchelor & Proudman (1954), Townsend, Hunt, Moffatt (a Cambridge school ?)

• Extended by Rogallo towards pseudo-spectral DNS (Rogallo space !) 1981

• Rediscovered by a community in applied maths in 1986 (Bayly, Craik)

• WKB variants, Lifschitz & Hameiri 1991, ... B. Dubrulle

• Large community in astrophysics (Rogachevskii, Kleorin, Balbus, Chagelishvili ...)
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Some comments about RDT

• To identify the general deterministic Green’s function is the best solution. (From

Moffatt, 1967, extended from my thesis (1982), implicitely rediscovered in the

stability community, Bayly, Craik, 1986).

-) Further application to correlations of any order (e.g. 3 for cascade).

-) Even applications to a known forcing (Astrophysicists) or to a closed nonlinear

contribution (e.g. in anisotropic and/or multimodal EDQNM)

• The problem of stabilizing or destabilizing effect is often not correctly addressed.
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Pressure-less Navier Stokes or multi-dimensional Burgers equation ?

10
0

10
2

10
4

10
6

10
8

Wave vector,  k

10
0

10
8

10
16

10
24

E
ne

rg
y 

sp
ec

tr
um

,  
E

(k
)

t = 10
-21

t = 3 × 10
-21

t = 10
-20

t = 10
-19

t = 10
-17

t = 10
-15

t = 10
-13

t = 10
-11

Spectrum and

snapshot in 2D Burgers turbulence, from Noullez et al., in SC book

GDR turbu, Poitiers 15 octobre, 2012
Claude Cambon



25

pressure-less limit. Multidimensional Burgers equations

• A large material from Jérémie Bec (Nice), e.g. Bec & Khanin, Phys. Rep. , 2007 (and

arxiv)

• Cosmological applications, ‘reconstruction of the initial conditions of the universe ...’ !

(Frisch et al., nature, 2002)

• What can be learn from that ?

-) difference between 3D-Burgers with potential velocity and ‘pressure-less’

Navier-Stokes equations

-) A maximum internal intermittency when the ‘structures’ are shocks.
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