Effets stabilisants ou déstabilisants de la compressibilité en turbulence

GDR turbu, Poitiers

Claude Cambon

Laboratoire de Mécanique des Fluides et d'Acoustique CNRS – ECL – UCB Lyon I – INSA

CTRL-L switch

Reduction of mixing

- Is homogeneous turbulence relevant ? MAY BE ...
- Is the compressibility always stabilizing in homogeneous turbulence ? NO !

Simplified problem and strategy

- An overall agreement: Role of pressure fluctuation, *mollification of pressure effects* with compressibility
- But opposite effects looking at *linear* 'rapid' and *nonlinear* 'slow' pressure-strain rate terms in RSM. Possible controversy ?
- Investigation of the linear response : a crucial difference between *irrotational* (e.g. axial compression) and *rotational* (e.g. plane shear) flows
 - -) Go back to linear theory (SLT) in the incompressible case
 - -) Introduce new couplings in isentropic SLT ... and explain

Helmholtz decomposition - incompressible case

$$\boldsymbol{V}(\boldsymbol{x},t) = \boldsymbol{V}^{(sol)} + \boldsymbol{V}^{(dil)} = \underbrace{\boldsymbol{V}^{(tor)} + \boldsymbol{V}^{(pol)}}_{V^{(sol)}} + \boldsymbol{V}^{(dil)}$$

Applied to strictly incompressible Navier-Stokes equations:

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{V} + \boldsymbol{\nabla} \boldsymbol{p} = 0, \quad \boldsymbol{\nabla} \cdot \boldsymbol{u} = 0$$
$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{V}^{(sol)} = 0, \quad \leftarrow \quad \frac{\partial \boldsymbol{\omega}}{\partial t} = \dots$$

$$\boldsymbol{V}^{(dil)} + \boldsymbol{\nabla} p = 0, \qquad \qquad \leftarrow \qquad \nabla^2 p = \dots$$

Implicitely solve Poisson, Biot-Savart, and related equations?

GDR turbu, Poitiers

,

Solenoidal projection - linear and nonlinear terms

Projection operator in 3D Fourier space $P_{ij}=\delta_{ij}-rac{k_ik_j}{k^2}$, $\widehat{m V}^{[sol)}={f P}\widehat{m V}$

$$\left(\frac{\partial}{\partial t} + \nu k^2\right)\hat{\boldsymbol{u}}(\boldsymbol{k},t) + \mathbf{P}\widehat{\boldsymbol{\omega}\times\boldsymbol{u}} = 0, \quad \boldsymbol{k}\cdot\hat{\boldsymbol{u}} = 0$$

Add a mean flow in a rotating frame

$$oldsymbol{u} o \underbrace{oldsymbol{Ax}}_{oldsymbol{U}} + oldsymbol{u}, oldsymbol{\omega} o 2oldsymbol{\Omega} + oldsymbol{\omega}$$
, so that

$$\dot{\hat{\boldsymbol{u}}}(\boldsymbol{k}(t),t) + \nu k^2 \hat{\boldsymbol{u}} + \mathbf{M} \mathbf{A} \hat{\boldsymbol{u}} + \mathbf{P}(2\Omega \times \hat{\boldsymbol{u}}) = -\mathbf{P} \widehat{\boldsymbol{\omega} \times \boldsymbol{u}} = 0$$

Local — up to k(t) — and algebraic solution of the linear (left) part (SLT). Solenoidal projection (mediated by pressure fluctuation) for both linear and nonlinear terms via $k_i k_j / k^2$ (origin of rapid and slow contributions in subsequent statistical equations)

Basic mean flow

$$\Omega^2 - S^2, < 0, 0, > 0$$

GDR turbu, Poitiers

Specific signature of linear response

- Conventional comparison between a 'linear' (inverse) time-scale S and a nonlinear one $\tau_{NL}=u'/\ell$? no universality
- Very different role of S in the basic linear operator, with or without production, and modulation by an angular term in Fourier space, as pure rotation 2Ω , specific $\pm i 2\Omega \cos(k, \Omega)$, very different from pure shear, due to solenoidal projection.
- Very different role in equations for statistical quantities, second-order single-point and two-point correlations

Very different domain of validity of the linear (SLT) solution, or nonlinear versus linear

- Isotropic compression-dilatation: The nonlinear term can be more rapid than the linear one ! No anisotropy, no significant explicit role of pressure.
- Pure rotation: Very delayed nonlinearity, inertial wave turbulence at $\Omega t \sim Ro^{-2}$
- Pure shear: Conventional (Hunt etal) view roughly valid: Validity of RDT $St \sim 1-10$, depending of initial 'shear rapidity' $S\tau_{NL}$ (inverse of a Rossby number)

Limitations of crude dimensional analysis, comparing S (spherical strain, anisotropic strain, shear), 2Ω , N (stable and unstable density stratification)

Irrotational vs. irrotational mean flow

From RDT (Batchelor & Proudman 1954) for irrotational strain to RDT (SLT) for rotational mean flow (Moffatt 1967, Sagaut and CC book 2008) Helmholtz equation (inviscid) $\dot{\omega}_i = \frac{\partial u_i}{\partial x_j} \omega_j$ Integral form (Kelvin) Linearization around $A_{ij} = S_{ij} + \epsilon_{inj} W_n$

$$\dot{\omega}_i = \underbrace{A_{ij}\omega_j}_{\odot} + \underbrace{\frac{\partial u_i}{\partial x_j}W_j}_{\odot}$$

GDR turbu, Poitiers

Compressibility. Isentropic SLT

• Mean flow parameters $\boldsymbol{U}=\boldsymbol{A}\boldsymbol{x}$, P(t), $\overline{\rho}(t)$,

$$a^2(t) = P/(\gamma \overline{\rho})$$

- Minimal set of dependent variables (fluctuating)
 - -) Incompressible $(u_1, u_2, u_3, p) \rightarrow u^{(tor)}, u^{(pol)}$ $(u^{(dil)} = 0, p \text{ slaved to them})$
 - -) Isentropic case $u^{(tor)}, u^{(pol)}, u^{(dil)}, u^{(p)} \sim p/(\overline{\rho}a)$
- Assumptions $\dot{s}=0$, $p/P\ll 1$

Toroidal-poloidal-dilatational decomposition

GDR turbu, Poitiers

Symmetric mean strain : effect of rapid axial compression

limits, isentropic homogeneous RDT + (DNS), monotonic Destabilization

- Pressure-released RDT $u_i(\boldsymbol{x},t) = F_{ji}^{-1}(\boldsymbol{X},t,t_0)u_j(\boldsymbol{X},t_0)$ (Debiève as well)
- Solenoidal RDT $u_i(\boldsymbol{x}, t) = (F_{ji}^{-1}(\boldsymbol{X}, t, t_0)u_j(\boldsymbol{X}, t_0))^{(sol)}$ Helmholtz decomposition. Pure addition of solenoidal and dilatational response.

GDR turbu, Poitiers

More general case with mean vorticity

- In search for applications : compression ramps (suggested by Nagi Mansour, CTR, 1993), restarted collaboration with L. Jacquin, Pierre, Tom (here) ...
- Interpretation from RSM : the "rapid" pressure-strain rate inhibits the "production" \rightarrow mollification of pressure means *destabilization* in the linear (RDT) limit
- A more complex answer using the decomposition toroidal poloidal dilatational for the velocity. (Craya-Herring in Fourier space) + pressure + entropy.

Feedback from dilatational mode induced by the mean vorticity

A linear system of four equations for toroidal-poloidal-dilatational-pressure disturbance mode : A *tensorial* Green's function.

- quasi-isentropic (viscous terms for numerics) RDT
- Gradient Mach number : S and $ak \rightarrow M_d(k) = S/(ak)$, with $M_g = (SL)/c$
- Breaking of acoustical equilibrium $E^{(dil)} = E^{(pres)}$ by the mean shear effect
- A linear feedback from dilatational to poloidal, induced by mean vorticity (e.g. pure plane shear): a key effect for stabilizing ...
- ... even if explicit dilatational terms are marginally relevant ?

Homogeneous shear flow

• Full DNS / RDT : cross-over about St = 4 for destabilizing to stabilizing effect.

• The feed-back from dilatational to poloidal mode is essential for predicting the "stabilization" in the linear limit

GDR turbu, Poitiers

Coupling in compressible RDT for pure shear: Details

$$\dot{u}^{(1)} + S \frac{K_3}{k(t)} u^{(2)} = S \frac{K_3 k_2(t)}{K_\perp} \frac{u^{(3)}}{k(t)}$$
(1)

$$\dot{(ku^{(2)})} = -S \frac{K_1}{K_\perp} k(t) u^{(3)}$$
(2)

$$\dot{\left(\frac{u^{(3)}}{k(t)}\right)} = 2S \frac{K_1 K_\perp}{k^4(t)} k(t) u^{(2)} - a_0 u^{(4)}$$
(3)

$$\dot{u}^{(4)} = a_0 k(t) u^{(3)}$$
(4)

15 octobre, 2012 Claude Cambon

GDR turbu, Poitiers

RSM modelling ?

Mollification of pressure yields

-) linear pressure-strain decreased \rightarrow production increased (e.g. basic deviatoric of production, LRR): M_t and M_g corrections ? Little hope to reproduce the complex SLT, which allows possible stabilization.

-) Nonlinear pressure-strain decreased \rightarrow production decreased (e.g. return-to-isotropy, feeding vertical component in pure shear): e.g. a simple factor (e.g. Heinz)

 e^{-CM_g}

On tue le mauvais cochon ? en 'tuant' l' effet de pression dans le terme 'rapide' (eg. Girimagi etal., Tacker etal.)

Discussion. Why stabilizing ?

- Mollification of pressure-strain : opposite effects looking at "rapid = linear" and "slow = nonlinear" pressure-strain tensors *Depletion of nonlinearity* instead of compressibility effect ?
- The SCALAR Green's function for fluctuating pressure is only a part (Thacker et al. 2006) Role of the TENSORIAL Green's function including both pressure effect and feedback from dilatational to poloidal (vertical) (Simone et al. 1997).
- new progress in complete quasi-analytical linear solution. Initialization ? Invariant term combining poloidal and pressure component. See the context of accretion discs in astrophysics, *shearing box, non-modal growth* Chagelishvili etal.
- Relevance of the *pressure-less* limit (easy to obtain in RSM) ?

Complements, to be discussed further ?

Modification of pressure Green's function: Not the whole story

- Example of incompressible turbulence in a rotating frame: -) Poisson equation for pressure with conventional time-independent Green's function $\nabla^2 p = f$... but $f = 2 \Omega \cdot \omega$...
 - -) and eventually p satisfies a propagation equation (inertial waves !) $\frac{\partial^2}{\partial t^2} \nabla^2 p + 4\Omega^2 \frac{\partial p}{\partial x_{\parallel}^2} = 0$
- Isolating an operator with a 'frozen' right-hand-side can yield wrong results
- Incorporate all linear couplings via a full RDT tensorial Green's function is better

Qualitative effect of shear

15 octobre, 2012 Claude Cambon

GDR turbu, Poitiers

History of RDT, cornerstones

see the cover of our SC book ... ! Babel tower, at least three communities Kelvin mode \leftrightarrow Rogallo space \leftrightarrow Shear wave

- Ideas more than hundred years ago (e.g. Kelvin), then Taylor, Prandtl and many others ...
- Batchelor & Proudman (1954), Townsend, Hunt, Moffatt (a Cambridge school ?)
- Extended by Rogallo towards pseudo-spectral DNS (Rogallo space !) 1981
- Rediscovered by a community in applied maths in 1986 (Bayly, Craik)
- WKB variants, Lifschitz & Hameiri 1991, ... B. Dubrulle
- Large community in astrophysics (Rogachevskii, Kleorin, Balbus, Chagelishvili ...)

Some comments about RDT

- To identify the general *deterministic* Green's function is the best solution. (From Moffatt, 1967, extended from my thesis (1982), implicitly rediscovered in the stability community, Bayly, Craik, 1986).
 - -) Further application to correlations of any order (e.g. 3 for cascade).
 - -) Even applications to a known forcing (Astrophysicists) or to a closed nonlinear contribution (e.g. in anisotropic and/or multimodal EDQNM)
- The problem of *stabilizing or destabilizing* effect is often not correctly addressed.

Pressure-less Navier Stokes or multi-dimensional Burgers equation ?

Spectrum and

snapshot in 2D Burgers turbulence, from Noullez et al., in SC book

GDR turbu, Poitiers

pressure-less limit. Multidimensional Burgers equations

- A large material from Jérémie Bec (Nice), e.g. Bec & Khanin, Phys. Rep., 2007 (and arxiv)
- Cosmological applications, 'reconstruction of the initial conditions of the universe ...' ! (Frisch et al., nature, 2002)
- What can be learn from that ?
 - -) difference between 3D-Burgers with potential velocity and 'pressure-less' Navier-Stokes equations
 - -) A maximum *internal* intermittency when the 'structures' are shocks.