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OUTLINE

Partial Integrated Transport Modeling (PITM) method: Hybr id RANS/LES simulations
— Mathematical physics formalism developed in the spectral s pace
— Generic subfilter dissipation-rate equation

— Hypothesis of consistency with the RANS model at the zero cut off limit

Test of the generic dissipation-rate equation on a self-sim ilar analytical flow example
— Full statistical case where the cutoff wave number K. reduces to zero

— Subfilter turbulence case where the cutoff wave number K¢ 1S non-zero

The PITM in practice

— Subfilter scale viscosity models
— Subfilter scale stress models

— Relaxation mechanism and convergence acceleration

Some PITM simulation examples
— Simulation of homogeneous turbulence

— Simulation of non-homogeneous turbulence
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MATHEMATICAL PHYSICS FORMALISM IN SPECTRAL SPACE

e Cooperation between ONERA (Bruno Chaouat) and CNRS (Roland Schiestel)

— Spectral partitioning (m = number of zones), definition of fil tered and averaged

guantities
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— Simulation LES (m=2) : filtered velocity: — u; = (u;) + ui(l)
* Large-scale fluctuating velocity: u.> = u,

* subgrid-scale fluctuating velocity: U
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MATHEMATICAL PHYSICS FORMALISM IN SPECTRAL SPACE

e Resulting equation in the spectral space by mean integratio ns over spherical shells,
i (X, k) = (Rij (X, £))A (Jeandel and Cambon 1981, Schiestel, 1987, Chaouat and
Schiestel, 2007)

Dpi; (X, k)
Dt

e Convection term Dgpij/Dt, Production term Pij,Transfer term 723-, Redistribution term

= Pi;( X, k) + Tij (X, 5) + 1Li;( X, k) + T35 (X, k) = (X, k) (2)

11;;, Diffusion term 7, Dissipation term  &;;
e Temporal PITM (TPITM) developed in frequency space (Gatski et al., 2010)

e Equation for the partial turbulent stress T(m)

;;j by integration of equation (2) in [Km—1, Km]

8%) = B g gl ) gl g gl e 3)
with
F = Fi — oiu(X, f-”»m)ag—f‘, (4)
with .
Fm o~ - /O U T (X, R)dr (5)
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MATHEMATICAL PHYSICS FORMALISM IN SPECTRAL SPACE

e Two scale models

— Subfilter-scale turbulent stress
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— Subfilter-scale turbulent energy
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GENERIC SUBFILTER DISSIPATION-RATE EQUATION

Dissipation-rate equation

O (esfs) _ (€srs) g
ot = Csfse <ksfs> <Psfs> Csfses <k5fs>

where

(ksgs) (f(/%d) — F('ﬂ?d))

3
sfser — 3/2 d sfses — 7 —
Csfser / ana Csfse, 9 IidE(K,d) <€st>

In a compact form, csfse, Can be written as

3 ks s
Csfseg — 5 - < kf >C(Hd)

k (]—"(ﬁ;d) — F(/ad)>

/ﬁ;dE(/id) €

((ka) =

For k. = 0,
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GENERIC SUBFILTER DISSIPATION-RATE EQUATION

e The value suggested for ¢, = Csfse; = 3/2 seems restrictive if one remarks that this
coefficient may take on different values in statistical RANS models according to its

calibration made by different authors

e et us now consider the standard form of the statistical diss Ipation-rate equation written

in homogeneous turbulence

Oe € €2
P — Ces ?

ot~ Ok

with given values of the coefficients ¢, and c,.

(18)

e The issue to address is to compute the function Cs fse; When the coefficient  cgfs¢, differs
from the value 3/2 (Chaouat and Schiestel, Physics of Fluids, vol. 24, 2012)

ONERA




ONERA - 10/2012

GENERIC SUBFILTER DISSIPATION-RATE EQUATION

e After some algebra, one can obtain:

0<gstfs> = c., <<€sfs> (P),;, — K§ B MC(@)) B <§ _Cel) <psf8>] (ears)?

k8f8> 2 k 2 <€5f8> <k5f5>
(19)
and ,
Oe € 3 3 Pl e
7 —cait = |(3-cow) - (30 T 7 @
showing that
3 3 P
Cep = (5 - C(/fd)) - (5 - Cq) - (21)
and
_ § . <'Z€Sf8> . § . <Psfs>
Csfsea — (2 L C("id)) (2 Cq) <€sf3> (22)
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GENERIC SUBFILTER DISSIPATION-RATE EQUATION

Both equations (21) and (22) allow to determine the function C(Iid) in two different forms as
follows
3 3\ P
C(’fd) - [5 — Cey T (Cel - 5) €] (23)
and < >
3 3\ (P.ys k
— |5 7 Csfse €e1 7 A 24
) = [ o + (0= 3) 125 7 @

_ 3  (ksgs) C 3N [ (Bsgs) P (kogs)
ez (o) [ 4] - [ ER2]

If we assume that the ratio <k8f5> /k of the subfilter energy to the total energy is constant or

varies slowly with time

Ps S ks S P -
(Pafs) g 4 Ssps) P — € (26)
(€sfs) k €
Then, we obtain the final form of the coefficient Csfse, that reads
k
CSfS€2 = C€1 + % (CGQ _ C€1) (27)

e Equation (27) established at high Reynolds number is the key equation
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PHYSICAL MEANING OF c¢s¢s¢, IN THE SPECTRAL SPACE

e The Kovasznay hypothesis

F(k,t) = C32 E(k,t)3? /2
Partial time derivative of both sides

1 0F(k,t) 31 0E(k,t)

F ot  2E Ot

OE(k,t) OF (k,t)

ot B Ok

0F(k,t) 3 F O0F(k,t)

ot - 2E Ok

Discretization in the spectral space

o F(m) 3 F(m) p(m=1) _ x(m)
ot ~ 2Em) Ak

(28)

(29)

(30)

(31)

(32)
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PHYSICAL MEANING OF cs¢s¢, IN THE SPECTRAL SPACE

The term E("™) Ak is in fact the partial turbulent energy within the spectral s lice
[/{m—la /{m]
oF(m) 3 Flm) F(m=1) 3 (F(m))2
= = — oe—r——— 33

ot 2 k0m 2 km) (33)
This equation looks like the flux equation in the multiple sca le model for the spectral slice
(m)
Same structure as the standard dissipation-rate equation i n which the coefficients are
Cey = Cey = 3/2

The constant value 3/2 in the limiting case of a very thin spectral slice

Ce, = 3/2is not a lucky haphazard !
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SELF-SIMILAR ANALYTICAL FLOW EXAMPLE
e Analytical solution (Reid and Harris (1959)

E(r,t) = H(t) G(y) = % G(r/at) )

where H and G are similarity functions, () = k+/at is a similarity variable whereas a and b
denote numerical constant coefficients

E

KB G @
Figure 1. Evolution of the density spectrum FE' corresponding to the self similar decay of tur-

bulence.
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On the FINITENESS of the ¢gr4, at LARGE Re
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Figure 2: Sketches of the spectral flux transfer F and sp@)gtral transfer term 7. Non-

equilibrium flows. (a) High Reynolds number; (b) Infinite Rey nolds number.
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SELF-SIMILAR ANALYTICAL FLOW EXAMPLE

e The dimensionless reduced variable involving the time is
2(k,t) = e(t) "3 72/3¢71 (35)

e Spectrum and the transfer term are computed by Taylor series expansions of the

dimensionless variable 2z = z(k,t) where k and t are independent variables as follows

E(k,t) = Cy e(t)?/375/3 Z ap 2" (36)

n=0

The Kovasznay hypothesis for the transfer term
F(k,t) = C32 E(k,t)3? /2 (37)

e Spectral energy equation in time and wave number at large Rey nolds number

OFE(k,t)  O0F(k,1)

ot O (38)
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SELF-SIMILAR ANALYTICAL FLOW EXAMPLE

The spectral flux transfer F

F(k,t) =€(t) [i A, z”] - (39)
n=0
The derivative of equation (36) reads
aEgz’ ) — C,.x°/? [g ~1/3de Z an 2" + /3 Z napz"" " — (40)
The derivative de/dt is computed as
dil(;) — —2e4/3,2/3, (41)

ONERA
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SELF-SIMILAR ANALYTICAL FLOW EXAMPLE

The derivative 0z / Ot is computed using the self preservation hypothesis

0z(k, 1) —2/3 1 —4/3 de 4 —1/3,—2 < 1 1/3,.2/3_2
= — — —1 t = —— = —= 42
ot RS W T 3 3¢ " @)
So that equation (40) reads
OF(k,t 2 5 7
% — _§C“ ek [27; + 50422 + 3a92% + 5&323 + O (24)] (43)

One can then obtain

3 3 2 3 1 3
F(k,t) =€ [1—|— §a1z+ 5 (a2—|— %) 22+ 5 (a3—|— 50102 = %) Z3—|—O<Z4>]

(44)
2 2 i
(9.7(/1,75) _ ——(—Zl-’i_l [§CL12 +3 <CL2 + ﬂ) Z2 4 9 <CL3 4 aiaz L ﬂ) Z3 +0 (24)]

Ok 3 2 4 2 2 24
(45)
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SELF-SIMILAR ANALYTICAL FLOW EXAMPLE

4 KJ_7 2 ) K 3 ) ,{—11/3
E(rk.t)= C.e¥/3x™53 -0 2/3 2038 S 41/3
(%) o 37 ¢ T3 2 Bl £3
+€2/375/30 (z4)
€2/3—2/3 5 el/3—4/3 2 . = A
F(Kat):€_2cﬁf+§cm t—Q_gcm t—3—|—60<z) 47)
(46)
oF 4 2/3xg=5/3 90 el/3x=7/3 4 =3
t —C———— — — (O, ——— - —03— 10 (24 48
8/<o(/1 ) = 3 n 9 42 3 /3 +en (2) (48)
These analytical results will form the basis of a test of the g eneric model for the € equation.

(Chaouat and Schiestel, Physics of Fluids, vol. 24, 2012)
We will show that the coefficient ¢, rse, introduced in the dissipation-rate equation takes a

finite value.
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SELF-SIMILAR ANALYTICAL FLOW EXAMPLE

10° D
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o=K € t

Figure 3: Evolving of the density spectrum  E(k,t)/E(k, 00) with respect to the dimension-
less variable o = r2/3¢!/3t

4 KT kTS
_ 2/3,.—5/3 2 1/3 3
E(k,t) = C, e3>/ - 3Cx et/ —— 30— (49)
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SELF-SIMILAR ANALYTICAL FLOW EXAMPLE
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Figure 4: Evolving of the spectral flux transfer .7:(11, t)/e with respect to the dimensionless

variable o = k2/3¢€l/3¢

2/3,.-2/3 1/3,.—4/3

€

F(k,t) =€ —2C, "

26 K

5
—C, 50
+3C > (50)

ONERA

19




ONERA - 10/2012

SELF-SIMILAR ANALYTICAL FLOW EXAMPLE

Governing equations

2/3,.-2/3 & 1/3,.—4/3
F(r,t)=¢e—2C, ————— + -C,,°2 ———
(k,t) =¢€ — = "

a O
F(kg,t) =€+ —/ E(k,t)dr
ot /..,
Full statistical case where K. equals zero

_ 3 Aksps) (Flra) = F(ka)\ _
“2 727 kaB(ra) ( > =7

Subfilter turbulence case where k. is non zero

ks S
< kf > = Q(nc) y Te = KelL
3 1{ksys) 3 dnQ(n.)
ST Se ~ ~ ]‘ =Ue— 5
Cofsea =5 T3}, [ 2"

Cs fse, always takes on a finite value whatever the domain variation o f Ky

ONERA
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PITM METHOD

e |nstantaneous transport equations and practical formulat ions (Schiestel and Dejoan,

2005, Chaouat and Schiestel, 2005-2012)

Dksfs
— L'sfs 7 €sfs JS s
Dt fs — €sfs T Jsf
D(Ti')sfs
D—Jt = (Pij)ss — (€i5)sfs + (Pij)sys + (Jij)ss
Desfs €sfs (Pmm)sfs 6gfs
— Ce — Csfse @ Je sfs
Dt Clksfs 2 Cf Q(W)ksfs—i_( )f

— “Exact ” coefficient ¢, where 7). = (k3/2/ic)/(63f5 + €<)

Ce, — Ce

1+ 8, n3]*"*

1

CSfSGQ (776) — C€1 +
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SOME PITM SIMULATIONS

e PITM challenges

— The PITM has been especially developed for performing conti nuous hybrid non-zonal

RANS-LES simulations on coarse grids

— Flows which depart from spectral equilibrium

e Simulation of homogeneous turbulence
— Decay of homogeneous turbulence (Chaouat and Schiestel, 20 09)

— Perturbed spectrum with a peak or defect of energy (Chaouat a nd Schiestel, 2009)

e Simulation of non-homogeneous turbulence
— Pulsed channel flows (Schiestel and Dejoan, 2005)
— Channel flow with mass injection (Chaouat and Schiestel, 200 5)
— Shearless mixing layer (Befeno and Schiestel, 2007)
— Channel flows over periodic hills (Chaouat, 2010)

— Turbulent rotating channel flows (Chaouat, 2012)

ONERA
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CHANNEL FLOWS SUBJECTED TO A SPANWISE ROTATION

15 w \ i T w ‘ ‘ ‘ : 15
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Figure 5. Mean velocity profile  (u1) /uy, in global coordinate. (a) PITM1 (24 x 48 x 64): o;
(b) PITM2 (84 x 64 x 64): o; (Chaouat, Physics of Fuids, 2012). Highly resolved LES
(Lamballais et al., TCFD, 1998). — .
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CHANNEL FLOWS SUBJECTED TO A SPANWISE ROTATION
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Figure 6. Mean velocity profile  (u1) /u,, in global coordinate. (a) PITM1 (24 x 48 x 64): o;

(c) PITM3 (124 x 84 x 84): o; (Chaouat, Physics of Fuids, 2012). Highly resolved LES
(Lamballais et al., TCFD, 1998): — . R,, = 14000, R, = 1.50.

ONERA

24




ONERA - 10/2012

CHANNEL FLOWS SUBJECTED TO A SPANWISE ROTATION

(@) (€)

Figure 7. Isosurfaces of vorticity modulus ~ w = 3u,, /d = 8. 10°. R,,, = 14000, R, = 0.17.
(@) PITM1 (24 x 48 x 64); (b) PITM2 (84 x 64 x 64); (Chaouat, Physics of Fuids, 2012).
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CHANNEL FLOWS SUBJECTED TO A SPANWISE ROTATION

(@) (€)

Figure 8. Isosurfaces of vorticity modulus ~ w = 3u,, /d = 12. 10°. R,,, = 14000, R, = 1.50.
(@) PITM1 (24 x 48 x 64); (c) PITM3 (124 x 84 x 84). (Chaouat, Physics of Fuids, 2012).
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CONCLUSION

Partial integrated transport modeling (PITM) method
— Mathematical physics formalism developed in the spectral s pace

— Further insights into the physical interpretation of the PI TM method, especially in its

basic foundations
PITM is a method and not a model itself !
PITM can be applied to each RANS model to derive its correspon ding subfilter model
PITM allows one to perform continuous hybrid non-zonal RANS /LES simulations
Drastic reductions of the computational cost by coarsening the meshes
PITM is a new route for simulations of turbulent flows

References can be found in Physics of Fluids and TCFD journal S

ONERA
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