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Continuous hybrid non-zonal RANS/LES simulations of

turbulent flows using the PITM method
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OUTLINE

• Partial Integrated Transport Modeling (PITM) method: Hybr id RANS/LES simulations

– Mathematical physics formalism developed in the spectral s pace

– Generic subfilter dissipation-rate equation

– Hypothesis of consistency with the RANS model at the zero cut off limit

• Test of the generic dissipation-rate equation on a self-sim ilar analytical flow example

– Full statistical case where the cutoff wave number κc reduces to zero

– Subfilter turbulence case where the cutoff wave number κc is non-zero

• The PITM in practice

– Subfilter scale viscosity models

– Subfilter scale stress models

– Relaxation mechanism and convergence acceleration

• Some PITM simulation examples

– Simulation of homogeneous turbulence

– Simulation of non-homogeneous turbulence

O
N

E
R

A
–

10
/2

01
2

2



MATHEMATICAL PHYSICS FORMALISM IN SPECTRAL SPACE

• Cooperation between ONERA (Bruno Chaouat) and CNRS (Roland Schiestel)

– Spectral partitioning (m = number of zones), definition of fil tered and averaged

quantities

ui = 〈ui〉+
N∑

m=1

u
′(m)
i ; u

′(m)
i (ξ) =

∫

κm−1<|κ|<κm

û′
i(κ) exp (jκξ)dκ (1)

– Simulation LES (m=2) : filtered velocity: ūi = 〈ui〉+ u
′(1)
i

∗ Large-scale fluctuating velocity: u<
i = u

′(1)
i

∗ subgrid-scale fluctuating velocity: u>
i = u

′(2)
i
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MATHEMATICAL PHYSICS FORMALISM IN SPECTRAL SPACE
• Resulting equation in the spectral space by mean integratio ns over spherical shells,

ϕij(X, κ) = (Rij(X, ξ))
∆

(Jeandel and Cambon 1981, Schiestel, 1987, Chaouat and

Schiestel, 2007)

Dϕij(X, κ)

Dt
= Pij(X, κ) + Tij(X, κ) + Πij(X, κ) + Jij(X, κ)− Eij(X, κ) (2)

• Convection term Dϕij/Dt, Production term Pij , Transfer term Tij , Redistribution term

Πij , Diffusion term Jij , Dissipation term Eij
• Temporal PITM (TPITM) developed in frequency space (Gatski et al., 2010)

• Equation for the partial turbulent stress τ
(m)
ij by integration of equation (2) in [κm−1, κm]

∂τ
(m)
ij

∂t
= P

(m)
ij + F

(m−1)
ij − F

(m)
ij +Ψ

(m)
ij + J

(m)
ij − ǫ

(m)
ij (3)

with

F
(m)
ij = F (m)

ij − ϕij(X, κm)
∂κm

∂t
, (4)

with

F (m)
ij = −

∫ κm

0

Tij(X, κ)dκ (5)
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MATHEMATICAL PHYSICS FORMALISM IN SPECTRAL SPACE

• Two scale models

– Subfilter-scale turbulent stress

∂τ
(1)
ij

∂t
= P

(1)
ij − F

(1)
ij +Ψ

(1)
ij + J

(1)
ij − ǫ

(1)
ij (6)

∂τ
(2)
ij

∂t
= P

(2)
ij + F

(1)
ij − F

(2)
ij +Ψ

(2)
ij + J

(2)
ij − ǫ

(2)
ij (7)

0 = F
(2)
ij − ǫ

(3)
ij (8)

– Subfilter-scale turbulent energy

∂k(1)

∂t
= P (1) − F (1) + J (1) − ǫ(1) (9)

∂k(2)

∂t
= P (2) + F (1) − F (2) + J (2) − ǫ(2) (10)

0 = F (2) − ǫ(3) (11)
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GENERIC SUBFILTER DISSIPATION-RATE EQUATION
• Dissipation-rate equation

∂ 〈ǫsfs〉
∂t

= csfsǫ1
〈ǫsfs〉
〈ksfs〉

〈Psfs〉 − csfsǫ2
〈ǫsfs〉2
〈ksfs〉

(12)

where

csfsǫ1 = 3/2 and csfsǫ2 =
3

2
− 〈ksfs〉

κdE(κd)

(F(κd)− F (κd)

〈ǫsfs〉

)
(13)

In a compact form, csfsǫ2 can be written as

csfsǫ2 =
3

2
− 〈ksfs〉

k
ζ(κd) (14)

ζ(κd) =
k

κdE(κd)

(F(κd)− F (κd)

ǫ

)
(15)

For κc = 0,

cǫ2 =
3

2
− ζ(κd) (16)

cǫsfs2
=

3

2
+

〈ksfs〉
k

(
cǫ2 −

3

2

)
(17)
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GENERIC SUBFILTER DISSIPATION-RATE EQUATION

• The value suggested for cǫ1 = csfsǫ1 = 3/2 seems restrictive if one remarks that this

coefficient may take on different values in statistical RANS models according to its

calibration made by different authors

• Let us now consider the standard form of the statistical diss ipation-rate equation written

in homogeneous turbulence

∂ǫ

∂t
= cǫ1

ǫ

k
P − cǫ2

ǫ2

k
(18)

with given values of the coefficients cǫ1 and cǫ2 .

• The issue to address is to compute the function csfsǫ2 when the coefficient csfsǫ1 differs

from the value 3/2 (Chaouat and Schiestel, Physics of Fluids, vol. 24, 2012)
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GENERIC SUBFILTER DISSIPATION-RATE EQUATION

• After some algebra, one can obtain:

∂ 〈ǫsfs〉
∂t

= cǫ1
〈ǫsfs〉
〈ksfs〉

〈P 〉sfs −
[(

3

2
− 〈ksfs〉

k
ζ(κd)

)
−
(
3

2
− cǫ1

) 〈Psfs〉
〈ǫsfs〉

] 〈ǫsfs〉2
〈ksfs〉

(19)

and
∂ǫ

∂t
= cǫ1

ǫ

k
P −

[(
3

2
− ζ(κd)

)
−

(
3

2
− cǫ1

)
P

ǫ

]
ǫ2

k
(20)

showing that

cǫ2 =

(
3

2
− ζ(κd)

)
−
(
3

2
− cǫ1

)
P

ǫ
(21)

and

csfsǫ2 =

(
3

2
− 〈ksfs〉

k
ζ(κd)

)
−
(
3

2
− cǫ1

) 〈Psfs〉
〈ǫsfs〉

(22)
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GENERIC SUBFILTER DISSIPATION-RATE EQUATION

Both equations (21) and (22) allow to determine the function ζ(κd) in two different forms as

follows

ζ(κd) =

[
3

2
− cǫ2 +

(
cǫ1 −

3

2

)
P

ǫ

]
(23)

and

ζ(κd) =

[
3

2
− csfsǫ2 +

(
cǫ1 −

3

2

) 〈Psfs〉
〈ǫsfs〉

]
k

〈ksfs〉
(24)

csfsǫ2 = cǫ2 +

(
3

2
− cǫ2

)[
1− 〈ksfs〉

k

]
+

(
cǫ1 −

3

2

)[ 〈Psfs〉
〈ǫsfs〉

− P

ǫ

〈ksfs〉
k

]
(25)

If we assume that the ratio 〈ksfs〉 /k of the subfilter energy to the total energy is constant or

varies slowly with time
〈Psfs〉
〈ǫsfs〉

≈ 1 +
〈ksfs〉

k

P − ǫ

ǫ
(26)

Then, we obtain the final form of the coefficient csfsǫ2 that reads

csfsǫ2 = cǫ1 +
〈ksfs〉

k
(cǫ2 − cǫ1) (27)

• Equation (27) established at high Reynolds number is the key equation
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PHYSICAL MEANING OF csfsǫ1 IN THE SPECTRAL SPACE

• The Kovasznay hypothesis

F(κ, t) = C−3/2
κ E(κ, t)3/2 κ5/2 (28)

Partial time derivative of both sides

1

F
∂F(κ, t)

∂t
=

3

2

1

E

∂E(κ, t)

∂t
(29)

∂E(κ, t)

∂t
= −∂F(κ, t)

∂κ
(30)

∂F(κ, t)

∂t
= −3

2

F
E

∂F(κ, t)

∂κ
(31)

Discretization in the spectral space

∂F (m)

∂t
=

3

2

F (m)

E(m)

F (m−1) −F (m)

∆κ
(32)
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PHYSICAL MEANING OF csfsǫ1 IN THE SPECTRAL SPACE

• The term E(m)∆κ is in fact the partial turbulent energy within the spectral s lice

[κm−1, κm]

∂F (m)

∂t
=

3

2

F (m)F (m−1)

k(m)
− 3

2

(F (m))2

k(m)
(33)

• This equation looks like the flux equation in the multiple sca le model for the spectral slice

(m)

• Same structure as the standard dissipation-rate equation i n which the coefficients are

cǫ1 = cǫ2 = 3/2

• The constant value 3/2 in the limiting case of a very thin spectral slice

• cǫ1 = 3/2 is not a lucky haphazard !
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SELF-SIMILAR ANALYTICAL FLOW EXAMPLE
• Analytical solution (Reid and Harris (1959)

E(κ, t) = H(t)G(γ) =
b√
t
G(κ

√
at) (34)

where H and G are similarity functions, γ(t) = κ
√
at is a similarity variable whereas a and b

denote numerical constant coefficients

Figure 1: Evolution of the density spectrum E corresponding to the self similar decay of tur-

bulence.
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On the FINITENESS of the csfsǫ2 at LARGE Re

F

T

k
c dk

k
c dk0

0

8
8

F

T

k
c dk

k
c dk

0

0

8
8

(a)

(b)

=e

~0

e

Fd different from e

Figure 2: Sketches of the spectral flux transfer F and spectral transfer term T . Non-

equilibrium flows. (a) High Reynolds number; (b) Infinite Rey nolds number.
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SELF-SIMILAR ANALYTICAL FLOW EXAMPLE

• The dimensionless reduced variable involving the time is

z(κ, t) = ǫ(t)−1/3κ−2/3t−1 (35)

• Spectrum and the transfer term are computed by Taylor series expansions of the

dimensionless variable z = z(κ, t) where κ and t are independent variables as follows

E(κ, t) = Cκ ǫ(t)
2/3κ−5/3

∞∑

n=0

an z
n (36)

The Kovasznay hypothesis for the transfer term

F(κ, t) = C−3/2
κ E(κ, t)3/2 κ5/2 (37)

• Spectral energy equation in time and wave number at large Rey nolds number

∂E(κ, t)

∂t
= −∂F(κ, t)

∂κ
(38)
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SELF-SIMILAR ANALYTICAL FLOW EXAMPLE

The spectral flux transfer F

F(κ, t) = ǫ(t)

[
∞∑

n=0

an z
n

]3/2

(39)

The derivative of equation (36) reads

∂E(κ, t)

∂t
= Cκκ

−5/3

[
2

3
ǫ−1/3 dǫ

dt

∞∑

n=0

an z
n + ǫ2/3

∞∑

n=0

nan z
n−1 ∂z

∂t

]
(40)

The derivative dǫ/dt is computed as

dǫ(t)

dt
= −2ǫ4/3κ2/3z (41)
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SELF-SIMILAR ANALYTICAL FLOW EXAMPLE

The derivative ∂z/∂t is computed using the self preservation hypothesis

∂z(κ, t)

∂t
= −κ−2/3

[
1

3
ǫ−4/3 dǫ

dt
t−1 + ǫ−1/3t−2

]
= − z

3t
= −1

3
ǫ1/3κ2/3z2 (42)

So that equation (40) reads

∂E(κ, t)

∂t
= −2

3
Cκ ǫκ

−1

[
2z +

5

2
a1z

2 + 3a2z
2 +

7

2
a3z

3 +O
(
z4
)]

(43)

One can then obtain

F(κ, t) = ǫ

[
1 +

3

2
a1z +

3

2

(
a2 +

a21
4

)
z2 +

3

2

(
a3 +

1

2
a1a2 −

a31
24

)
z3 +O

(
z4
)]

(44)

∂F(κ, t)

∂κ
= −2

3
ǫκ−1

[
3

2
a1z + 3

(
a2 +

a21
4

)
z2 +

9

2

(
a3 +

a1a2
2

− a31
24

)
z3 +O

(
z4
)]

(45)
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SELF-SIMILAR ANALYTICAL FLOW EXAMPLE

E(κ, t) = Cκ ǫ
2/3κ−5/3 − 4

3
Cκ

2 ǫ1/3
κ−7/3

t
+

2

3
Cκ

3 κ−3

t2
− 8

81
Cκ

4 ǫ−1/3 κ
−11/3

t3

+ǫ2/3κ−5/3O
(
z4
)

(46)

F(κ, t) = ǫ− 2Cκ
ǫ2/3κ−2/3

t
+

5

3
Cκ

2 ǫ1/3κ−4/3

t2
− 2

3
Cκ

3 κ−2

t3
+ ǫO

(
z4
)

(47)

∂F
∂κ

(κ, t) =
4

3
Cκ

ǫ2/3κ−5/3

t
− 20

9
Cκ

2 ǫ1/3κ−7/3

t2
+

4

3
Cκ

3 κ−3

t3
+ ǫκ−1O

(
z4
)

(48)

These analytical results will form the basis of a test of the g eneric model for the ǫ equation.

(Chaouat and Schiestel, Physics of Fluids, vol. 24, 2012)

We will show that the coefficient csfsǫ2 introduced in the dissipation-rate equation takes a

finite value.
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SELF-SIMILAR ANALYTICAL FLOW EXAMPLE

0 1 10 100
 α=κ 2/3ε1/3

 t

10
−2

10
0

10
2

E
(κ

,t)
/E

0

Figure 3: Evolving of the density spectrum E(κ, t)/E(κ,∞) with respect to the dimension-

less variable α = κ2/3ǫ1/3t

E(κ, t) = Cκ ǫ
2/3κ−5/3 − 4

3
Cκ

2 ǫ1/3
κ−7/3

t
+

2

3
Cκ

3 κ−3

t2
(49)
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SELF-SIMILAR ANALYTICAL FLOW EXAMPLE

0 10 20 30 40
 α=κ 2/3ε1/3

 t

0

0.5

1

1.5

2

 F
/ε

Figure 4: Evolving of the spectral flux transfer F(κ, t)/ǫ with respect to the dimensionless

variable α = κ2/3ǫ1/3t

F(κ, t) = ǫ− 2Cκ
ǫ2/3κ−2/3

t
+

5

3
Cκ

2 ǫ1/3κ−4/3

t2
(50)
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SELF-SIMILAR ANALYTICAL FLOW EXAMPLE
• Governing equations

F(κ, t) = ǫ− 2Cκ
ǫ2/3κ−2/3

t
+

5

3
Cκ

2 ǫ1/3κ−4/3

t2
(51)

F (κd, t) = ǫ+
∂

∂t

∫ ∞

κd

E(κ, t) dκ (52)

• Full statistical case where κc equals zero

cǫ2 =
3

2
− 〈ksfs〉

κdE(κd)

(F(κd)− F (κd)

ǫ

)
= 2 (53)

• Subfilter turbulence case where κc is non zero

〈ksfs〉
k

= Q(ηc) , ηc = κcL (54)

csfsǫ2 =
3

2
+

1

2

〈ksfs〉
k

[
1 +

3

2
ηc

d lnQ(ηc)

dηc

]
(55)

• csfsǫ2 always takes on a finite value whatever the domain variation o f κd
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PITM METHOD

• Instantaneous transport equations and practical formulat ions (Schiestel and Dejoan,

2005, Chaouat and Schiestel, 2005-2012)

Dksfs
Dt

= Psfs − ǫsfs + Jsfs (56)

D(τij)sfs
Dt

= (Pij)sfs − (ǫij)sfs + (Φij)sfs + (Jij)sfs (57)

Dǫsfs
Dt

= cǫ1
ǫsfs
ksfs

(Pmm)sfs
2

− csfsǫ2(ηc)
ǫ2sfs
ksfs

+ (Jǫ)sfs (58)

– “Exact ” coefficient cǫ2 where ηc = (k3/2κc)/(ǫsfs + ǫ<)

csfsǫ2(ηc) = cǫ1 +
cǫ2 − cǫ1

[1 + βη η3c ]
2/9

(59)
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SOME PITM SIMULATIONS

• PITM challenges

– The PITM has been especially developed for performing conti nuous hybrid non-zonal

RANS-LES simulations on coarse grids

– Flows which depart from spectral equilibrium

• Simulation of homogeneous turbulence

– Decay of homogeneous turbulence (Chaouat and Schiestel, 20 09)

– Perturbed spectrum with a peak or defect of energy (Chaouat a nd Schiestel, 2009)

• Simulation of non-homogeneous turbulence

– Pulsed channel flows (Schiestel and Dejoan, 2005)

– Channel flow with mass injection (Chaouat and Schiestel, 200 5)

– Shearless mixing layer (Befeno and Schiestel, 2007)

– Channel flows over periodic hills (Chaouat, 2010)

– Turbulent rotating channel flows (Chaouat, 2012)
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CHANNEL FLOWS SUBJECTED TO A SPANWISE ROTATION

0 0.2 0.4 0.6 0.8 1
x3/δ

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
x3/δ

0

0.5

1

1.5

(a) (b)

Figure 5. Mean velocity profile 〈u1〉 /um in global coordinate. (a) PITM1 (24× 48× 64): ◦;

(b) PITM2 (84× 64× 64): ◦; (Chaouat, Physics of Fuids, 2012). Highly resolved LES

(Lamballais et al., TCFD, 1998): — .
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CHANNEL FLOWS SUBJECTED TO A SPANWISE ROTATION

0 0.2 0.4 0.6 0.8 1
X3/δ

0
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1
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0 0.2 0.4 0.6 0.8 1
X3/δ
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(a) (c)

Figure 6. Mean velocity profile 〈u1〉 /um in global coordinate. (a) PITM1 (24× 48× 64): ◦;

(c) PITM3 (124× 84× 84): ◦; (Chaouat, Physics of Fuids, 2012). Highly resolved LES

(Lamballais et al., TCFD, 1998): — . Rm = 14000, Ro = 1.50.
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CHANNEL FLOWS SUBJECTED TO A SPANWISE ROTATION

(a) (c)

Figure 7. Isosurfaces of vorticity modulus ω = 3um/δ = 8. 105. Rm = 14000, Ro = 0.17.

(a) PITM1 (24× 48× 64); (b) PITM2 (84× 64× 64); (Chaouat, Physics of Fuids, 2012).
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CHANNEL FLOWS SUBJECTED TO A SPANWISE ROTATION

(a) (c)

Figure 8. Isosurfaces of vorticity modulus ω = 3um/δ = 12. 105. Rm = 14000, Ro = 1.50.

(a) PITM1 (24× 48× 64); (c) PITM3 (124× 84× 84). (Chaouat, Physics of Fuids, 2012).
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CONCLUSION

• Partial integrated transport modeling (PITM) method

– Mathematical physics formalism developed in the spectral s pace

– Further insights into the physical interpretation of the PI TM method, especially in its

basic foundations

• PITM is a method and not a model itself !

• PITM can be applied to each RANS model to derive its correspon ding subfilter model

• PITM allows one to perform continuous hybrid non-zonal RANS /LES simulations

• Drastic reductions of the computational cost by coarsening the meshes

• PITM is a new route for simulations of turbulent flows

• References can be found in Physics of Fluids and TCFD journal s
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