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Abstract

Doak’s momentum potential theory of energy flux is explored using a model
problem constructed to facilitate the introduction of solenoidal perturba-
tions, in a controlled manner, to an otherwise well-understood sound gener-
ation problem: that of an irrotational, subsonically-convecting wavepacket.
The solenoidal wavepacket has, in addition to a downstream radiation lobe
similar to its irrotational counterpart, lower level radiation in the sideline
direction. Helmholtz decomposition of the linear momentum and subsequent
exploration of the various source and flux terms that participate, accord-
ing to Doak’s fluctuation-energy corollory, in the generation and transport
of total fluctuating enthalpy (TFE), reveal a rich inner structure involving
work performed on, and extracted from, the fluid system by means of the
irrotational and solenoidal components of the wavepacket. The response of
the fluid involves the internal transport and attentuation of ‘trapped’ TFE,
as well as the radiation of a small amount of ‘radiating’ TFE. The analysis
shows how the downstream radiation is associated with a mechanism similar
to that of the irrotational wavepacket, while the sideline radiation arises due
to the scattering of irrotational wavepacket fluctuations by solenoidal mo-
mentum fluctuations. It is postulated that such a mechanism might play a
role in the sideline radiation of subsonic jets.

1. Introduction

Phil Doak was fascinated by the question ‘How does turbulent fluid
motion generate sound ?’, and in particular by the dilemma posed by the
fact that this question is really only meaningful if we know what is meant
by ‘sound’ within the confines of the turbulent field. A sound wave is a
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Doak’s momentum-potential theory of energy flux 

Linear momentum density: sum of solenoidal and irrotational components 

ENERGY FLUX MOMENTUM POTENTIAL THEORY 69 

If the total power output of any region containing fluid in l-luctuating motion is zero, 
then the fluid in that region can be said to be in a state of local fluctuating dynamical 
equi1ibrium.t A rigorous definition of such local fluctuating dynamical equilibrium is 
given. All hornentropic, inviscid, ii-rotational flows, including the small amplitude acoustic 
motion of a lossless fluid belong to this class of fluctuating flows. 

It is proved that a necessary and sufficient condition that a lluctuating flow be in a 
state of local, fluctuating equilibrium is that it radiates no far field acoustic energy, and 
vice versa. 

There is some evidence that fully developed turbulent flows, such as those of boundary 
layers and jets, also may belong to the class of flows in local, fluctuating, dynamical 
equilibrium. 

From an order of magnitude estimation of radiated acoustic energy source terms in 
subsonic and supersonic jet flows, it is found that (i) the dominant sources appear to be 
located near the middle of the turbulent mixing region, mainly on the jet side, rather 
than the outside, of the jet lip line; (ii) the flux of momentum across fixed boundaries 
that is responsible for far field acoustic radiation is that associated with work done by 
the fluctuating Coriolis accelerations. 

2. THREE INHERENT SIMPLIFYING PROPERTIES OF THE MOMENTUM POTENTIAL 
DESCRIPTION OF FLUCTUATING FLUID MOTION 

2.1. CHOICE OF THE LINEAR MOMENTUM DENSITY AS THE PRIMARY DEPENDENT 

VECTOR FIELD AND ITS IMMEDIATE CONSEQUENCES 

In the momentum potential formulation of the exact theory of continuum mechanics 
[l-5], the linear momentum density is regarded as the primary dependent vector field, 
rather than particle displacement or velocity. It is expressed, according to Helmholtz’ 
theorem, as a sum of unique solenoidal and irrotational components, 

P V i 3  B i - 8 $/8 X , a B i/a X i E  0, (1) 

where p is the mass density and Vi is the particle velocity. Bi is the solenoidal component 
of the linear momentum density and -a$/&~, the irrotational component. 

The equation of mass transport for any material continuum for which mass is conserved 
then becomes 

ap/at -a**/a$ = 0. 

For continuum motion that is time-stationary in the mass density, i.e., 

I 

T 

P(& t) = iGc) + P ’(& t), (1/2T) p ’(xk, t) dt = 0, 
-T 

(2) 

(3) 

where 2T is the (possibly infinite) interval over which the fluctuating mass density has 
zero average value, the equation of mass transport becomes 

apl/at - a**‘/ax: = 0, a*tj/axf = 0. (4) 
The mean scalar momentum potential gradient, a&x&ax, thus is solenoidal (as well as 
irrotational). But the solenoidal mean momentum density, according to equation (l), can 
be considered already given by B i(X k)s  T h u s, without any loss of generality, I&X,) can 
be taken to be zero. 

tHere, see section 5.3, 1 have defined an effectively “point-localized” equilibrium. This may be too much of 
an idealization. A regional, collective local equilibrium also deserves consideration. 

Mass conservation is then a linear equation: 
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Hence, for any motion of any continuum that is time-stationary in the mass density 
and in the solenoidal and irrotational components of the linear momentum density, one 
can express the linear momentum density us a sum of three, uniquely defined components, 
the first of which is a solenoidal mean component, the second a solenoidal fluctuating 
component of zero mean, and the third an n-rotational fluctuating component of zero mean: 

Ps=pq+(pUi)‘=Bi(Xk)+BI(Xk, t)-a+‘(Xk, t)/C?X, 

a&/axi = aB;/axi = 0. (5) 

By virtue of these defining relationships [S] (permissible without any loss of generality 
for suitably time-stationary motion), the equation of mass transport 

ap/at + a(pv,)/ax, = 0, 

which evidently is a non-linear equation in p and 4, reduces to the linear Poisson equation 
in the two fluctuating scalar field variables I,!I’(x~, t) and p’(x,,., t): namely, 

a2*‘/axf = a&/at. (6) 
Thus, the momentum potential formulation of continuum motion problems has three 

inherent, simplifying properties for suitably time-stationary fluctuations: (i) the primary 
dependent vector field to be determined (the linear momentum density) is expressed as 
a linear superposition of a mean solenoidal, a fluctuating solenoidal and a fluctuating 
h-rotational component, each uniquely defined; (ii) the mass transport equation reduces 
to a linear Poisson equation involving only the fluctuating mass density and the fluctuating 
scalar potential; (iii) the scalar momentum potential has zero mean value. 

Simplifying property (i), of course, is also possessed by formulations in which (as is 
traditional in fluid dynamics) the particle velocity, Vi, is regarded as the primary dependent 
vector field and is expressed, again by application of Helmholtz’ theorm, as a linear 
superposition of unique irrotational and solenodial components (see, for example, the 
recent interesting paper by Yates and Sandri [6]), but simplifying properties (ii) and (iii) 
are not possessed by such formulations. 

2.2. UNIQUE DEFINITION OF TURBULENT, ACOUSTIC AND THERMAL COMPONENTS OF 

THE FLUCTUATING LINEAR MOMENTUM DENSITY FOR TIME-STATIONARY BUT 

OTHERWISE ARBITRARY MOTION OF A SINGLE-CHEMICAL-COMPONENT 

CONTINUUM 

Most important, the existence of simplifying properties (ii) and (iii) leads to unique 
dejinitions, valid for any suitably time-stationary motion of any singie-chemical- 
component fluid continuum, of “turbulent”, “acoustic” and “thermal” components of 
the linear momentum density fluctuations, as follows. 

For a single-chemical-component continuum, or the equivalent, one can assume the 
existence of a constitutive relationship of the form 

P = P(PA (7) 

where p is the thermodynamic pressure and S the entropy. Then, 

SP = PpSP + PSW (8) 
where 

Pp = (WaP)s = l/c2, ps = (Was),. (9) 
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From the energy conservation equation: where B is the solenoidal vector potential, and ψ the scalar potential.
The first of Doak’s energy balances takes the form

∂

∂xj

(

H Bj +H ′B′

j −H ′
∂ψ′

∂xj

)

= ESi
, (8)

where ESi
is the energy associated with the body-force excitation. And the

second, which comprises fluctuating quantities only :

∂

∂xj

(

H ′B′

j −H ′
∂ψ′

∂xj

)

=
∂ψ′

∂xi

(#Ω ∧ #u)′i −B′

i(#Ω ∧ #u)′i + ESi
. (9)

A further decomposition, proposed by Jenvey [13], can then be used to split
the TFE into irrotational and solenoidal components, H ′ = H ′

B +H ′

A. The
energy balance then becomes

∂

∂xj

(

(H ′

B +H ′

A)B
′

j − (H ′

B +H ′

A)
∂ψ′

∂xj

)

=
∂ψ′

∂xi

(#Ω ∧ #u)′i − B′

i(#Ω ∧ #u)′i + ESi
.

(10)
where H ′

B and H ′

A can be written, to first order, as:

H ′

B = c̄M̄j(B
′

j/ρ̄), (11)

H ′

A = (1− M̄2
j )(p

′/ρ̄)− c̄M̄j [(∂ψ
′/∂xj)/ρ̄] (12)

with c2 = γp/ρ and the Mach number vector Mj ≡ vj/c.

4. Numerical method

4.0.1. Euler solver

The Euler equations are solved by means of a (2,4) conservative finite-
difference scheme based on MacCormack’s predictor-corrector method [14]
with block-decompostion and MPI parallelization. The system may be closed
by the thermodynamic relations for an ideal gas. For these simulations, non-
reflective boundary conditions [15] are implemented, with the addition of
sponges zones at all sides of the boundary (see figure 2). The dimensions
of the computational domain are [Lx × Ly] = [15 × 15], and dimensions of
the physical domain are [Lx × Ly] = [10× 10], with a number of grid points
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4. Numerical method

4.0.1. Euler solver

The Euler equations are solved by means of a (2,4) conservative finite-
di↵erence scheme based on MacCormack’s predictor-corrector method [7]

1
Doak proposes a further separation of the irrotational component into thermal and

acoustic components; however, we here consider homentropic flows and so there is no

thermal component.

5

For fluctuating quantities only: 

where H  is the total enthalpy. 

cf. Moyal (1952); Lighthill (1952); Chu & Kovaznay (1958). 
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ical insight has not been fully explored. We consider model problems, com-
puted by Direct Numerical Simulation of the two-dimensional Euler equa-
tions, involving a wavepacket source, similar to those frequently used to
model sound production by coherent structures in turbulent jets [4, 5], but
whose amplitude and solenoidality can be controlled. In the purely irrota-
tional case there is no ambiguity regarding the physics—analytical solutions
using retarded-potential formalism can provide clear physical understanding
regarding the source and flux mechanisms at work in the fluid. The addition
of a solenoidal perturbation leads to additional mechanisms that make phys-
ical interpretation more di�cult. We perform a Helmholtz decomposition of
the linear momentum and use Doak’s momentum potential theory of energy
flux to study these mechanisms.

The model problem is described in section §2. Doak’s momentum poten-
tial theory of energy flux is briefly recalled in section §3. The details of the
numerical method are outlined in section §??.

2. Model problem

2.1. Irrotational and solenoidal wavepackets

We study the response of the two-dimensional Euler equations to body
force excitations derived from the velocity field

~u = (u+ ✏u
✏

, v + ✏v
✏

), (1)

where the velocity components derive from the potentials � and  as follows:

u =
@�

@x
; v =

@�

@y
(2)

u
✏

= �

@ 

@y
; v

✏

=
@ 

@x
, (3)

(4)

and where the potentials are wavepackets with the following forms:

� = A exp(�
(x� x

o

)2

�2
x

�

(y � y
o

)2

�2
y

) cos(k
x

x� k
x

U
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t), (5)

 = y�, (6)
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A model problem: wavepacket forcing with vorticity enhancement 
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Figure 1: Example of the forcing function at a given time t = t
o

: (a) r · ~u; (b) r ^ ~u for

✏ 6= 0. As time evolves these forms are convected from left to right at convection velocity

U
c

and their amplitudes are modulated in accordance with the Gaussian envelopes and

the axial and radial length scales �
x

and �
y

with U
c

the convection velocity (which is maintained subsonic), k
x

, �
x

and
�
y

, respectively, the axial wavenumber and the axial and radial envelopes of
the wavepacket.

By varying the parameters A and ✏ the amplitude (and eventual non-
linear behaviour) and vorticity can be controlled. Two cases are considered:
(A = 0.01, ✏ = 0) & (A = 0.01, ✏ = 10). When ✏ = 0 the excitation is
irrotational with a divergence as shown in figure 1(a); when ✏ 6= 0, the
forcing has a solenoidal component (shown in figure 1(b)) in addition to the
irrotational component (1(a)).

3. Flow decomposition

Doak’s energy balance formulations are based on a Helmholtz decompo-
sition of the linear momentum and allow the time-averaged energy flux to be
expressed as a linear combination of mean-solenoidal, fluctuating-solenoidal
and fluctuating-irrotational components: terms corresponding to the trans-
port of TFE by each of these components of the linear momentum are thereby
identified. From the solution of the Euler equations, using a Poisson solver
described later, the momentum is decomposed into solenoidal and irrotational
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By varying the parameters A and ✏ the amplitude (and eventual non-
linear behaviour) and vorticity can be controlled. Two cases are considered:
(A = 0.01, ✏ = 0) & (A = 0.01, ✏ = 10). When ✏ = 0 the excitation is
irrotational with a divergence as shown in figure 1(a); when ✏ 6= 0, the
forcing has a solenoidal component (shown in figure 1(b)) in addition to the
irrotational component (1(a)).

3. Flow decomposition

Doak’s energy balance formulations are based on a Helmholtz decompo-
sition of the linear momentum and allow the time-averaged energy flux to be
expressed as a linear combination of mean-solenoidal, fluctuating-solenoidal
and fluctuating-irrotational components: terms corresponding to the trans-
port of TFE by each of these components of the linear momentum are thereby
identified. From the solution of the Euler equations, using a Poisson solver
described later, the momentum is decomposed into solenoidal and irrotational
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ε #= 0. As time evolves these forms are convected from left to right at convection velocity
Uc and their amplitudes are modulated in accordance with the Gaussian envelopes and
the axial and radial length scales λx and λy

(A = 0.01, ε = 0) & (A = 0.01, ε = 10). When ε = 0 the excitation is
irrotational with a divergence as shown in figure 1(a); when ε #= 0, the
forcing has a solenoidal component (shown in figure 1(b)) in addition to the
irrotational component (1(a)).

3. Flow decomposition

Doak’s energy-balance formulations are based on a Helmholtz decompo-
sition of the linear momentum and allow the time-averaged energy flux to be
expressed as a linear combination of mean-solenoidal, fluctuating-solenoidal
and fluctuating-irrotational components: terms corresponding to the trans-
port of TFE by each of these components of the linear momentum are thereby
identified. From the solution of the Euler equations, using a Poisson solver
described later, the momentum is decomposed into solenoidal and irrotational
components1

ρui = Bi +B′

i −
∂ψ′

∂xi

(7)

1Doak proposes a further separation of the irrotational component into thermal and
acoustic components; however, we here consider homentropic flows and so there is no
thermal component.
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described later, the momentum is decomposed into solenoidal and irrotational
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acoustic components; however, we here consider homentropic flows and so there is no
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4. Numerical method

4.0.1. Euler solver

The Euler equations are solved by means of a (2,4) conservative finite-
di↵erence scheme based on MacCormack’s predictor-corrector method [7]

1
Doak proposes a further separation of the irrotational component into thermal and

acoustic components; however, we here consider homentropic flows and so there is no

thermal component.
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where the vector flux field is represented using streamlines.

by the downstream end of the wavepacket, where the combination of its de-
caying amplitude and convective nature leads to the performance of positive
work which is evacuated in the downstream direction in form of a propaga-
tive energy flux: TFE being carried away from the source by irrotational
momentum fluctuations.

5.2. Solenoidal wavepacket

The source and flux mechanisms at work when ε = 10, and the wavepacket
comprises a non-zero solenoidal component, are quite different. In this case
the external forcing function is constituted as follows:

ESi
= ρu · af = (Bi +B′

i +
∂ψ′

∂xi

)(ai + εaεi) (17)

= (Bi +B′

i +
∂ψ′

∂xi

)ai + (Bi +B′

i +
∂ψ′

∂xi

)εaεi , (18)

where ρu is the fluid particle momentum, and af the externally-imposed
acceleration of the wavepacket.

The first and second groups of terms on the right hand side correspond to
work done on (or extracted from) the fluid by, respectively, the action of the
irrotational (ai) and solenoidal (εaεi) components of the forcing. And each of
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By varying the parameters A and ✏ the amplitude (and eventual non-
linear behaviour) and vorticity can be controlled. Two cases are considered:
(A = 0.01, ✏ = 0) & (A = 0.01, ✏ = 10). When ✏ = 0 the excitation is
irrotational with a divergence as shown in figure 1(a); when ✏ 6= 0, the
forcing has a solenoidal component (shown in figure 1(b)) in addition to the
irrotational component (1(a)).

3. Flow decomposition

Doak’s energy balance formulations are based on a Helmholtz decompo-
sition of the linear momentum and allow the time-averaged energy flux to be
expressed as a linear combination of mean-solenoidal, fluctuating-solenoidal
and fluctuating-irrotational components: terms corresponding to the trans-
port of TFE by each of these components of the linear momentum are thereby
identified. From the solution of the Euler equations, using a Poisson solver
described later, the momentum is decomposed into solenoidal and irrotational
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By varying the parameters A and ✏ the amplitude (and eventual non-
linear behaviour) and vorticity can be controlled. Two cases are considered:
(A = 0.01, ✏ = 0) & (A = 0.01, ✏ = 10). When ✏ = 0 the excitation is
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5.1. Irrotational wavepacket

Figures 4(a) & (b) show the non-zero terms in equation 9 when ε = 0:

the source term, ESi
, and associated flux, H ′ ∂ψ

′

∂xj
. In this case the source

mechanism is simply the irrotational wavepacket, Si, whose energy is ESi
,

and the response of the fluid comprises a transport of TFE, H ′, by the
scalar momentum potential ∂ψ′

∂xj
: the latter process, illustrated by means of

streamlines of H ′ ∂ψ
′

∂xj
in figure 4(b), here corresponds to that associated with

classical acoustic intensity p′u′.
Sound generation by this kind of mechanism is mostly a process of can-

cellation; to cite Lighthill: ‘it is the radiation due to the minute fraction of
the fluctuation in momentum flux which is not balanced by a local recip-
rocating motion that we must seek to determine.” If the problem is viewed
in a space-time context, in the framework of retarded-potential integrals for
instance, this process will be manifest in the incomplete cancellations asso-
ciated with integration in the retarded-time reference frame. In the context
of an energy corollary the same process is manifest in regions where work
is either performed on the fluid by the source (some component of the ap-
plied force is aligned with and has the same sign, on average, as the local
fluid-particle motion) or where work is extracted from the fluid by the source
(some component of the applied force is aligned with but has opposite sign,
on average, to that of the local fluid-particle motion). If the two components
of the motion are orthogonal no work is done. Positive work is mostly done
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Figure 3: Pressure and vorticity of response of the Euler equations to forcing. (a) pressure
field for A = 0.01, ε = 0; (b) pressure field for A = 0.01, ε = 10; (c) vorticity field for
A = 0.01, ε = 10
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A further decomposition, proposed by Jenvey [6], can then be used to split
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4. Numerical method

4.0.1. Euler solver

The Euler equations are solved by means of a (2,4) conservative finite-
di↵erence scheme based on MacCormack’s predictor-corrector method [7]

1
Doak proposes a further separation of the irrotational component into thermal and

acoustic components; however, we here consider homentropic flows and so there is no

thermal component.
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the convection velocity (which is maintained subsonic), k
x

, �
x

and
�
y

, respectively, the axial wavenumber and the axial and radial envelopes of
the wavepacket.

By varying the parameters A and ✏ the amplitude (and eventual non-
linear behaviour) and vorticity can be controlled. Two cases are considered:
(A = 0.01, ✏ = 0) & (A = 0.01, ✏ = 10). When ✏ = 0 the excitation is
irrotational with a divergence as shown in figure 1(a); when ✏ 6= 0, the
forcing has a solenoidal component (shown in figure 1(b)) in addition to the
irrotational component (1(a)).

3. Flow decomposition

Doak’s energy balance formulations are based on a Helmholtz decompo-
sition of the linear momentum and allow the time-averaged energy flux to be
expressed as a linear combination of mean-solenoidal, fluctuating-solenoidal
and fluctuating-irrotational components: terms corresponding to the trans-
port of TFE by each of these components of the linear momentum are thereby
identified. From the solution of the Euler equations, using a Poisson solver
described later, the momentum is decomposed into solenoidal and irrotational

4

Wavepacket without vorticity enhancement: source and flux terms 
(a) (b)

Figure 4: (a) ESi
; (b) H ′ ∂ψ

′

∂xj
where the vector flux field is represented using streamlines.

by the downstream end of the wavepacket, where the combination of its de-
caying amplitude and convective nature leads to the performance of positive
work which is evacuated in the downstream direction in form of a propaga-
tive energy flux: TFE being carried away from the source by irrotational
momentum fluctuations.

5.2. Solenoidal wavepacket

The source and flux mechanisms at work when ε = 10, and the wavepacket
comprises a non-zero solenoidal component, are quite different. In this case
the external forcing function is constituted as follows:

ESi
= ρu · af = (Bi +B′

i +
∂ψ′

∂xi

)(ai + εaεi) (17)

= (Bi +B′

i +
∂ψ′

∂xi

)ai + (Bi +B′

i +
∂ψ′

∂xi

)εaεi , (18)

where ρu is the fluid particle momentum, and af the externally-imposed
acceleration of the wavepacket.

The first and second groups of terms on the right hand side correspond to
work done on (or extracted from) the fluid by, respectively, the action of the
irrotational (ai) and solenoidal (εaεi) components of the forcing. And each of

10

Classical acoustic intensity 
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where B is the solenoidal vector potential, and  the scalar potential.
The first of Doak’s energy balances takes the form
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where E
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is the energy associated with the body-force excitation. And the
second, which comprises fluctuating quantities only :
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A further decomposition, proposed by Jenvey [6], can then be used to split
the TFE into irrotational and solenoidal components, H 0 = H 0

B

+H 0
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. The
energy balance then becomes
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where H 0

B

and H 0
A

can be written, to first order, as:
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with c2 = �p/⇢ and the Mach number vector M
j

⌘ v
j

/c.

4. Numerical method

4.0.1. Euler solver

The Euler equations are solved by means of a (2,4) conservative finite-
di↵erence scheme based on MacCormack’s predictor-corrector method [7]

1
Doak proposes a further separation of the irrotational component into thermal and

acoustic components; however, we here consider homentropic flows and so there is no

thermal component.
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Figure 1: Example of the forcing function at a given time t = t
o

: (a) r · ~u; (b) r ^ ~u for

✏ 6= 0. As time evolves these forms are convected from left to right at convection velocity

U
c

and their amplitudes are modulated in accordance with the Gaussian envelopes and

the axial and radial length scales �
x

and �
y

with U
c

the convection velocity (which is maintained subsonic), k
x

, �
x

and
�
y

, respectively, the axial wavenumber and the axial and radial envelopes of
the wavepacket.

By varying the parameters A and ✏ the amplitude (and eventual non-
linear behaviour) and vorticity can be controlled. Two cases are considered:
(A = 0.01, ✏ = 0) & (A = 0.01, ✏ = 10). When ✏ = 0 the excitation is
irrotational with a divergence as shown in figure 1(a); when ✏ 6= 0, the
forcing has a solenoidal component (shown in figure 1(b)) in addition to the
irrotational component (1(a)).

3. Flow decomposition

Doak’s energy balance formulations are based on a Helmholtz decompo-
sition of the linear momentum and allow the time-averaged energy flux to be
expressed as a linear combination of mean-solenoidal, fluctuating-solenoidal
and fluctuating-irrotational components: terms corresponding to the trans-
port of TFE by each of these components of the linear momentum are thereby
identified. From the solution of the Euler equations, using a Poisson solver
described later, the momentum is decomposed into solenoidal and irrotational

4

these groups has contributions associated with correlation (non-zero, time-
averaged, scalar product) between the irrotational or solenoidal component
of the imposed velocity and the mean solenoidal, fluctuating-solenoidal and
fluctuating-irrotational components of the momentum.

Figure 5 shows the total, time-averaged, source and flux fields; the latter
is again represented by means of streamlines. In addition to a downstream
flux of fluctuation energy, similar to that observed in the purely irrotational
case, there is an acoustic flux normal to the wavepacket axis, associated with
the sideline radiation, and a more complex internal flux field. The latter
comprises a transport of fluctuation energy, initially normal to and away
from the wavepacket axis, a change in the direction of the flux occuring
at about y = ±0.25, at which point the fluctuation energy is majoritarily
carried upstream. There is a significant attentuation of the fluctuation energy
associated with the change in direction.

Figure 5: Source (solid and dashed black contours demarcate positive and negative regions
respectively) and flux field associated with solenoidal wavepacket. The flux is represented
by means of streamlines, coloured to reflect the local flux norm

The associated source field is shown by black contours (solid and dashed
lines demarcate, respectively, regions of positive (source) and negative (sink)
activity): a large source is apparent on the wavepacket axis, and this is
flanked (in the positive and negative y-directions) by two extended sinks. In
the former region work is done by the forcing on the fluid; in the latter work

11

Sink: work removed from  
    fluid by forcing 

Source:  work performed on 
        fluid by forcing. 
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where B is the solenoidal vector potential, and  the scalar potential.
The first of Doak’s energy balances takes the form
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where E
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is the energy associated with the body-force excitation. And the
second, which comprises fluctuating quantities only :
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A further decomposition, proposed by Jenvey [6], can then be used to split
the TFE into irrotational and solenoidal components, H 0 = H 0

B

+H 0
A

. The
energy balance then becomes
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where H 0

B

and H 0
A

can be written, to first order, as:
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with c2 = �p/⇢ and the Mach number vector M
j

⌘ v
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/c.

4. Numerical method

4.0.1. Euler solver

The Euler equations are solved by means of a (2,4) conservative finite-
di↵erence scheme based on MacCormack’s predictor-corrector method [7]

1
Doak proposes a further separation of the irrotational component into thermal and

acoustic components; however, we here consider homentropic flows and so there is no

thermal component.
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Figure 1: Example of the forcing function at a given time t = t
o

: (a) r · ~u; (b) r ^ ~u for

✏ 6= 0. As time evolves these forms are convected from left to right at convection velocity

U
c

and their amplitudes are modulated in accordance with the Gaussian envelopes and

the axial and radial length scales �
x

and �
y

with U
c

the convection velocity (which is maintained subsonic), k
x

, �
x

and
�
y

, respectively, the axial wavenumber and the axial and radial envelopes of
the wavepacket.

By varying the parameters A and ✏ the amplitude (and eventual non-
linear behaviour) and vorticity can be controlled. Two cases are considered:
(A = 0.01, ✏ = 0) & (A = 0.01, ✏ = 10). When ✏ = 0 the excitation is
irrotational with a divergence as shown in figure 1(a); when ✏ 6= 0, the
forcing has a solenoidal component (shown in figure 1(b)) in addition to the
irrotational component (1(a)).

3. Flow decomposition

Doak’s energy balance formulations are based on a Helmholtz decompo-
sition of the linear momentum and allow the time-averaged energy flux to be
expressed as a linear combination of mean-solenoidal, fluctuating-solenoidal
and fluctuating-irrotational components: terms corresponding to the trans-
port of TFE by each of these components of the linear momentum are thereby
identified. From the solution of the Euler equations, using a Poisson solver
described later, the momentum is decomposed into solenoidal and irrotational

4

Sink: work removed from  
    fluid by forcing 

Figure 8: Black and white streamlines show, respectively, H ′ ∂ψ
′

∂xi
and H ′B′

i. The source
is shown by isosurfaces (black and white colours demarcate positive and negative regions
respectively).

(a) (b)

Figure 9: Full source term, ESi
superposed on full flux field: (a) full color scale; (b)

saturated color scale.

Saturation of the colour scale (9(b)) shows small pockets of low-level source
activity at (x, y) = (1,±0.25) and (x, y) = (−0.5,±0.6).

Figure 10 shows the structure of that part of the source associated with
work performed on, or extracted from, the system by the irrotational com-

14

Source:  work performed on 
        fluid by forcing. 
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Figure 1: Example of the forcing function at a given time t = t
o

: (a) r · ~u; (b) r ^ ~u for

✏ 6= 0. As time evolves these forms are convected from left to right at convection velocity

U
c

and their amplitudes are modulated in accordance with the Gaussian envelopes and

the axial and radial length scales �
x

and �
y

with U
c

the convection velocity (which is maintained subsonic), k
x

, �
x

and
�
y

, respectively, the axial wavenumber and the axial and radial envelopes of
the wavepacket.

By varying the parameters A and ✏ the amplitude (and eventual non-
linear behaviour) and vorticity can be controlled. Two cases are considered:
(A = 0.01, ✏ = 0) & (A = 0.01, ✏ = 10). When ✏ = 0 the excitation is
irrotational with a divergence as shown in figure 1(a); when ✏ 6= 0, the
forcing has a solenoidal component (shown in figure 1(b)) in addition to the
irrotational component (1(a)).

3. Flow decomposition

Doak’s energy balance formulations are based on a Helmholtz decompo-
sition of the linear momentum and allow the time-averaged energy flux to be
expressed as a linear combination of mean-solenoidal, fluctuating-solenoidal
and fluctuating-irrotational components: terms corresponding to the trans-
port of TFE by each of these components of the linear momentum are thereby
identified. From the solution of the Euler equations, using a Poisson solver
described later, the momentum is decomposed into solenoidal and irrotational

4

Trapped TFE:  
 
  - Generated on wavepacket axis,  
 
  - Transported by solenoidal momentum  
    fluctuations, 
 
  - Attenuated in the sink. 
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where B is the solenoidal vector potential, and  the scalar potential.
The first of Doak’s energy balances takes the form
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where E
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is the energy associated with the body-force excitation. And the
second, which comprises fluctuating quantities only :
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A further decomposition, proposed by Jenvey [6], can then be used to split
the TFE into irrotational and solenoidal components, H 0 = H 0

B

+H 0
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. The
energy balance then becomes
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where H 0
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with c2 = �p/⇢ and the Mach number vector M
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⌘ v
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/c.

4. Numerical method

4.0.1. Euler solver

The Euler equations are solved by means of a (2,4) conservative finite-
di↵erence scheme based on MacCormack’s predictor-corrector method [7]

1
Doak proposes a further separation of the irrotational component into thermal and

acoustic components; however, we here consider homentropic flows and so there is no

thermal component.

5
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Figure 1: Example of the forcing function at a given time t = t
o

: (a) r · ~u; (b) r ^ ~u for

✏ 6= 0. As time evolves these forms are convected from left to right at convection velocity

U
c

and their amplitudes are modulated in accordance with the Gaussian envelopes and

the axial and radial length scales �
x

and �
y

with U
c

the convection velocity (which is maintained subsonic), k
x

, �
x

and
�
y

, respectively, the axial wavenumber and the axial and radial envelopes of
the wavepacket.

By varying the parameters A and ✏ the amplitude (and eventual non-
linear behaviour) and vorticity can be controlled. Two cases are considered:
(A = 0.01, ✏ = 0) & (A = 0.01, ✏ = 10). When ✏ = 0 the excitation is
irrotational with a divergence as shown in figure 1(a); when ✏ 6= 0, the
forcing has a solenoidal component (shown in figure 1(b)) in addition to the
irrotational component (1(a)).

3. Flow decomposition

Doak’s energy balance formulations are based on a Helmholtz decompo-
sition of the linear momentum and allow the time-averaged energy flux to be
expressed as a linear combination of mean-solenoidal, fluctuating-solenoidal
and fluctuating-irrotational components: terms corresponding to the trans-
port of TFE by each of these components of the linear momentum are thereby
identified. From the solution of the Euler equations, using a Poisson solver
described later, the momentum is decomposed into solenoidal and irrotational

4

Propagating TFE: 
 
  - Generated at the core of the wavepacket 
 
  - Transported by irrotational momentum  
    fluctuations 
 
  - Escapes in a downstream radiation lobe  
    and two normal radiation lobes 
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where B is the solenoidal vector potential, and  the scalar potential.
The first of Doak’s energy balances takes the form
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where E
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is the energy associated with the body-force excitation. And the
second, which comprises fluctuating quantities only :
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A further decomposition, proposed by Jenvey [6], can then be used to split
the TFE into irrotational and solenoidal components, H 0 = H 0

B

+H 0
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. The
energy balance then becomes
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where H 0
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can be written, to first order, as:
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with c2 = �p/⇢ and the Mach number vector M
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4. Numerical method

4.0.1. Euler solver

The Euler equations are solved by means of a (2,4) conservative finite-
di↵erence scheme based on MacCormack’s predictor-corrector method [7]

1
Doak proposes a further separation of the irrotational component into thermal and

acoustic components; however, we here consider homentropic flows and so there is no

thermal component.

5

Flux due to irrotational momentum fluctuations 
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Figure 1: Example of the forcing function at a given time t = t
o

: (a) r · ~u; (b) r ^ ~u for

✏ 6= 0. As time evolves these forms are convected from left to right at convection velocity

U
c

and their amplitudes are modulated in accordance with the Gaussian envelopes and

the axial and radial length scales �
x

and �
y

with U
c

the convection velocity (which is maintained subsonic), k
x

, �
x

and
�
y

, respectively, the axial wavenumber and the axial and radial envelopes of
the wavepacket.

By varying the parameters A and ✏ the amplitude (and eventual non-
linear behaviour) and vorticity can be controlled. Two cases are considered:
(A = 0.01, ✏ = 0) & (A = 0.01, ✏ = 10). When ✏ = 0 the excitation is
irrotational with a divergence as shown in figure 1(a); when ✏ 6= 0, the
forcing has a solenoidal component (shown in figure 1(b)) in addition to the
irrotational component (1(a)).

3. Flow decomposition

Doak’s energy balance formulations are based on a Helmholtz decompo-
sition of the linear momentum and allow the time-averaged energy flux to be
expressed as a linear combination of mean-solenoidal, fluctuating-solenoidal
and fluctuating-irrotational components: terms corresponding to the trans-
port of TFE by each of these components of the linear momentum are thereby
identified. From the solution of the Euler equations, using a Poisson solver
described later, the momentum is decomposed into solenoidal and irrotational

4
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where B is the solenoidal vector potential, and  the scalar potential.
The first of Doak’s energy balances takes the form
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where E
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is the energy associated with the body-force excitation. And the
second, which comprises fluctuating quantities only :
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A further decomposition, proposed by Jenvey [6], can then be used to split
the TFE into irrotational and solenoidal components, H 0 = H 0

B

+H 0
A

. The
energy balance then becomes
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where H 0
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and H 0
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can be written, to first order, as:
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with c2 = �p/⇢ and the Mach number vector M
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4. Numerical method

4.0.1. Euler solver

The Euler equations are solved by means of a (2,4) conservative finite-
di↵erence scheme based on MacCormack’s predictor-corrector method [7]

1
Doak proposes a further separation of the irrotational component into thermal and

acoustic components; however, we here consider homentropic flows and so there is no

thermal component.

5

Doak’s formulation enables separation 
and visualisation of these two different  
energy flux mechanisms. 

Solenoidal and irrotational flux 
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Source decomposition 

(a) (b)

Figure 4: (a) ESi
; (b) H ′ ∂ψ

′

∂xj
where the vector flux field is represented using streamlines.

by the downstream end of the wavepacket, where the combination of its de-
caying amplitude and convective nature leads to the performance of positive
work which is evacuated in the downstream direction in form of a propaga-
tive energy flux: TFE being carried away from the source by irrotational
momentum fluctuations.

5.2. Solenoidal wavepacket

The source and flux mechanisms at work when ε = 10, and the wavepacket
comprises a non-zero solenoidal component, are quite different. In this case
the external forcing function is constituted as follows:

ESi
= ρu · af = (Bi +B′

i +
∂ψ′

∂xi

)(ai + εaεi) (17)

= (Bi +B′

i +
∂ψ′

∂xi

)ai + (Bi +B′

i +
∂ψ′

∂xi

)εaεi , (18)

where ρu is the fluid particle momentum, and af the externally-imposed
acceleration of the wavepacket.

The first and second groups of terms on the right hand side correspond to
work done on (or extracted from) the fluid by, respectively, the action of the
irrotational (ai) and solenoidal (εaεi) components of the forcing. And each of

10

(a) (b)

Figure 4: (a) ESi
; (b) H ′ ∂ψ

′

∂xj
where the vector flux field is represented using streamlines.

by the downstream end of the wavepacket, where the combination of its de-
caying amplitude and convective nature leads to the performance of positive
work which is evacuated in the downstream direction in form of a propaga-
tive energy flux: TFE being carried away from the source by irrotational
momentum fluctuations.

5.2. Solenoidal wavepacket

The source and flux mechanisms at work when ε = 10, and the wavepacket
comprises a non-zero solenoidal component, are quite different. In this case
the external forcing function is constituted as follows:

ESi
= ρu · af = (Bi +B′

i +
∂ψ′

∂xi

)(ai + εaεi) (17)

= (Bi +B′

i +
∂ψ′

∂xi

)ai + (Bi +B′

i +
∂ψ′

∂xi

)εaεi , (18)

where ρu is the fluid particle momentum, and af the externally-imposed
acceleration of the wavepacket.

The first and second groups of terms on the right hand side correspond to
work done on (or extracted from) the fluid by, respectively, the action of the
irrotational (ai) and solenoidal (εaεi) components of the forcing. And each of

10

Figure 8: Black and white streamlines show, respectively, H ′ ∂ψ
′

∂xi
and H ′B′

i. The source
is shown by isosurfaces (black and white colours demarcate positive and negative regions
respectively).

(a) (b)

Figure 9: Full source term, ESi
superposed on full flux field: (a) full color scale; (b)

saturated color scale.

Saturation of the colour scale (9(b)) shows small pockets of low-level source
activity at (x, y) = (1,±0.25) and (x, y) = (−0.5,±0.6).

Figure 10 shows the structure of that part of the source associated with
work performed on, or extracted from, the system by the irrotational com-

14

(a) (b)

Figure 4: (a) ESi
; (b) H ′ ∂ψ

′

∂xj
where the vector flux field is represented using streamlines.

by the downstream end of the wavepacket, where the combination of its de-
caying amplitude and convective nature leads to the performance of positive
work which is evacuated in the downstream direction in form of a propaga-
tive energy flux: TFE being carried away from the source by irrotational
momentum fluctuations.

5.2. Solenoidal wavepacket

The source and flux mechanisms at work when ε = 10, and the wavepacket
comprises a non-zero solenoidal component, are quite different. In this case
the external forcing function is constituted as follows:

ESi
= ρu · af = (Bi +B′

i +
∂ψ′

∂xi

)(ai + εaεi) (17)

= (Bi +B′

i +
∂ψ′

∂xi

)ai + (Bi +B′

i +
∂ψ′

∂xi

)εaεi , (18)

where ρu is the fluid particle momentum, and af the externally-imposed
acceleration of the wavepacket.

The first and second groups of terms on the right hand side correspond to
work done on (or extracted from) the fluid by, respectively, the action of the
irrotational (ai) and solenoidal (εaεi) components of the forcing. And each of

10



Institut Pprime 

(a) (b)

Figure 4: (a) ESi
; (b) H ′ ∂ψ

′

∂xj
where the vector flux field is represented using streamlines.

by the downstream end of the wavepacket, where the combination of its de-
caying amplitude and convective nature leads to the performance of positive
work which is evacuated in the downstream direction in form of a propaga-
tive energy flux: TFE being carried away from the source by irrotational
momentum fluctuations.

5.2. Solenoidal wavepacket

The source and flux mechanisms at work when ε = 10, and the wavepacket
comprises a non-zero solenoidal component, are quite different. In this case
the external forcing function is constituted as follows:

ESi
= ρu · af = (Bi +B′

i +
∂ψ′

∂xi

)(ai + εaεi) (17)

= (Bi +B′

i +
∂ψ′

∂xi

)ai + (Bi +B′

i +
∂ψ′

∂xi

)εaεi , (18)

where ρu is the fluid particle momentum, and af the externally-imposed
acceleration of the wavepacket.

The first and second groups of terms on the right hand side correspond to
work done on (or extracted from) the fluid by, respectively, the action of the
irrotational (ai) and solenoidal (εaεi) components of the forcing. And each of

10

(a) (b)

Figure 4: (a) ESi
; (b) H ′ ∂ψ

′

∂xj
where the vector flux field is represented using streamlines.

by the downstream end of the wavepacket, where the combination of its de-
caying amplitude and convective nature leads to the performance of positive
work which is evacuated in the downstream direction in form of a propaga-
tive energy flux: TFE being carried away from the source by irrotational
momentum fluctuations.

5.2. Solenoidal wavepacket

The source and flux mechanisms at work when ε = 10, and the wavepacket
comprises a non-zero solenoidal component, are quite different. In this case
the external forcing function is constituted as follows:

ESi
= ρu · af = (Bi +B′

i +
∂ψ′

∂xi

)(ai + εaεi) (17)

= (Bi +B′

i +
∂ψ′

∂xi

)ai + (Bi +B′

i +
∂ψ′

∂xi

)εaεi , (18)

where ρu is the fluid particle momentum, and af the externally-imposed
acceleration of the wavepacket.

The first and second groups of terms on the right hand side correspond to
work done on (or extracted from) the fluid by, respectively, the action of the
irrotational (ai) and solenoidal (εaεi) components of the forcing. And each of

10

Figure 8: Black and white streamlines show, respectively, H ′ ∂ψ
′

∂xi
and H ′B′

i. The source
is shown by isosurfaces (black and white colours demarcate positive and negative regions
respectively).

(a) (b)

Figure 9: Full source term, ESi
superposed on full flux field: (a) full color scale; (b)

saturated color scale.

Saturation of the colour scale (9(b)) shows small pockets of low-level source
activity at (x, y) = (1,±0.25) and (x, y) = (−0.5,±0.6).

Figure 10 shows the structure of that part of the source associated with
work performed on, or extracted from, the system by the irrotational com-

14

(a) (b)

Figure 10: (Bi +B′

i +
∂ψ′

∂xi
)ai: Components of source term involving work done on, or

extracted from, the system by irrotational part of forcing function: (a) full color scale; (b)
saturated color scale.

ponent of the forcing. This is the dominant part of the source: both its
level and structure are similar to the complete source term. The pockets of
positive source energy at (x, y) = (0 < x < 1,±0.5) look to be contribut-
ing to the upstream deviation of the internal, solenoidal, flux field. This is
an indication that—while admittedly the energy corollary cannot rigorously
establish a term-by-term, cause-effect relationship between the various con-
stituents of the source and flux—the solenoidal component of the flux may
be more sensitive to this component of the source.

Figures 11, 12 and 13, which show the three constituent of this part of

the source term, illustrate how, while B′

iai dominates, ∂ψ′

∂xi
ai—which consti-

tutes the entire source in the irrotational case (ε = 0)—has a non-negligible
contribution at the center of the wavepacket. We can postulate that this com-

ponent of the source drives that part of the H ′ ∂ψ
′

∂xi
flux field associated with

the downstream radiation, whereas theH ′B′

i part of the flux is predominantly
driven by B′

iai: i.e. the downstream radiating part of the flux is the result of
work done on the fluid by coupling of the irrotational component of the forc-
ing with the irrotational component of the fluctuating momentum, whereas
the internal, trapped-and-attenuated, solenoidal flux is predominantly driven
by the coupling between the irrotational component of the forcing and the
solenoidal component of the fluctuating momentum; we will see later that
this component of the source is also responsible for the sideline radiation.
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Figure 10 shows the structure of that part of the source associated with
work performed on, or extracted from, the system by the irrotational com-
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Figure 11: Biai: work associated with correlation between irrotational component of
forcing and the mean solenoidal momentum of the fluid: (a) full color scale; (b) saturated
color scale.
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Figure 12: B′

iai: work associated with correlation between irrotational component of
forcing and the fluctuating solenoidal momentum of the fluid: (a) full color scale; (b)
saturated color scale.

The regions of low-level positive source activity observed in figure 10,
and evoked above as participating in the driving of the internal solenoidal
flux upstream, can be seen, from figures 12 and 13, to be associated with
work done on the system by the coupling of the irrotational component of
the focing and the fluctuating-solenoidal and -irrotational components of the
momentum.
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Saturation of the colour scale (9(b)) shows small pockets of low-level source
activity at (x, y) = (1,±0.25) and (x, y) = (−0.5,±0.6).

Figure 10 shows the structure of that part of the source associated with
work performed on, or extracted from, the system by the irrotational com-

14

(a) (b)

Figure 11: Biai: work associated with correlation between irrotational component of
forcing and the mean solenoidal momentum of the fluid: (a) full color scale; (b) saturated
color scale.
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Figure 12: B′

iai: work associated with correlation between irrotational component of
forcing and the fluctuating solenoidal momentum of the fluid: (a) full color scale; (b)
saturated color scale.

The regions of low-level positive source activity observed in figure 10,
and evoked above as participating in the driving of the internal solenoidal
flux upstream, can be seen, from figures 12 and 13, to be associated with
work done on the system by the coupling of the irrotational component of
the focing and the fluctuating-solenoidal and -irrotational components of the
momentum.
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Figure 9: Full source term, ESi
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saturated color scale.

Saturation of the colour scale (9(b)) shows small pockets of low-level source
activity at (x, y) = (1,±0.25) and (x, y) = (−0.5,±0.6).

Figure 10 shows the structure of that part of the source associated with
work performed on, or extracted from, the system by the irrotational com-
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Figure 16: B′

iεa
ε
i : work associated with correlation between rotational component of forc-

ing and the fluctuating solenoidal momentum of the fluid: (a) full color scale; (b) saturated
color scale.
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∂xi
εaεi : work associated with correlation between rotational component of

forcing and the fluctuating irrotational momentum of the fluid: (a) full color scale; (b)
saturated color scale.

B′

iai, whose contribution is about one fifth that of the former. The terms
associated with the work performed by the solenoidal component of the forc-
ing are, as we have seen above, sinks: the work they extract from the system
reduces its capacity to radiate sound. The internally-generated source terms
are negligible where the radiated sound power is concerned.

Given the distinctive directivity, with its clearly-identifiable downstream
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Figure 19: Contributions of each of the source terms to radiated sound.

tational wavepackets can lead to lower-level sound radiation normal to the
wavepacket axis. This mechanism is similar to that comprised in the scat-
tering of a plane wave by a cylindrical vortex filament, as described by [2].
Coherent structures in jets are frequently modelled using simplified, irrota-
tional, wavepackets, and can successfully explain the mechanisms that under-
pin downstream radiation. They are less successful in explaining the sideline
component. The study shows how the presence of vortical fluctuations—
which are certainly carried by coherent structures in real jets—leads to an
additional sound-production mechanism, associated with the scattering of
irrotational fluctuations by the solenoidal component of the fluctuating mo-
mentum, and which radiates in the sideline direction. The study leads us to
tentatively postulate that such a mechanism might play a role in the sideline
radiation of turbulent jets.
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Conclusions 

Doak’s formalism allowed us to probe the inner workings of the sound 
generation mechanisms in the very simple flow considered, 
 
The separation of trapped and propagating TFE, 
 
Source mechanisms: 

  
 Familiar downstream lobe appears to be due to alignement of 
 wavepacket forcing with irrotational momentum fluctuations, 

 
 Less familiar sidelobes appear to be due scattering of wavepacket 
 motion by solenoidal momentum fluctuation 

 
Would be useful to extend to: 
 

 Systems with non-zero mean flow, 
 Heated and multi-species flows, to study the entropy and other terms, 
 Flow systems with stronger internal sources – compressible turbulence  
               for instance... 
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Doak’s momentum-potential theory of energy flux 

Three simplifying properties for time-stationary flows: 
 
 
 

 1. Primary dependent vector field is expressed as linear superposition of 
     mean solenoidal, fluctuating solenoidal and fluctuating irrotational components 

 
 
 
 
 

 2.  Mass conservation reduces to linear Poisson equation 
 
 
 
 
 

 3. Scalar momentum potential has zero mean  
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Figure 1: Example of the forcing function at a given time t = to: (a) ∇ · !u; (b) ∇ ∧ !u for
ε #= 0. As time evolves these forms are convected from left to right at convection velocity
Uc and their amplitudes are modulated in accordance with the Gaussian envelopes and
the axial and radial length scales λx and λy

(A = 0.01, ε = 0) & (A = 0.01, ε = 10). When ε = 0 the excitation is
irrotational with a divergence as shown in figure 1(a); when ε #= 0, the
forcing has a solenoidal component (shown in figure 1(b)) in addition to the
irrotational component (1(a)).

3. Flow decomposition

Doak’s energy-balance formulations are based on a Helmholtz decompo-
sition of the linear momentum and allow the time-averaged energy flux to be
expressed as a linear combination of mean-solenoidal, fluctuating-solenoidal
and fluctuating-irrotational components: terms corresponding to the trans-
port of TFE by each of these components of the linear momentum are thereby
identified. From the solution of the Euler equations, using a Poisson solver
described later, the momentum is decomposed into solenoidal and irrotational
components1

ρui = Bi +B′

i −
∂ψ′

∂xi

(7)

1Doak proposes a further separation of the irrotational component into thermal and
acoustic components; however, we here consider homentropic flows and so there is no
thermal component.
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boundaries. In addition, fluctuations and reflected waves are damped using
the following term, as described by Bogey [18] :

∂U

∂t
= · · ·−

cσ(x, y)

∆x
(U − U) (15)

where

U = [ρ, ρu, ρv, ρe]

σ(x, y) = σmax

(

x−x0

xmax−x0

)2

and where σmax = 0.15; x0 and xmax are, respectively, the locations of the
begining and the end of the sponge zone.

4.0.2. Poisson problem

In Doak’s momentum potential theory [6], the non-linear equation of mass
transport is reduced to a linear Poisson equation in two fluctuating scalar
field variables ψ′(xk, t) and ρ′(xk, t) :

∂2ψ′

∂x2
i

=
∂ρ′

∂t
. (16)

Using a five-point stencil with second-order accuracy, the Poisson equa-
tion is posed as a linear-algebraic equation : Ax = b, where x = ψ′. The
Conjugate Gradient steepest descent method is used to solve the equation
using block-decompostion and MPI parallelisation. At the boundary, as the
fluctuations are here entirely irrotational the Dirichlet boundary condition
is specified by integrating ∂ψ′

∂xi
= ρui in order to obtain the boundary values

of ψ′. Having obtained ψ′ in this manner, B′

i can be readily computed from
equation 7.

5. Results

The response of the two-dimensional Euler equations to the body-force
excitations is shown in figure 3. In the case of ε = 0 there is no vorticity, the
radiation is that of an irrotational wavepacket, such as are frequently used
as simplified models for coherent structures in jets ([7, 8]). When ε = 10
the sound production mechanism is modified, as seen in figure 3(b). The
presence of vortical fluctuations in the wavepacket leads to an enhancement
of the downstream radiation (x), and to the generation of additional radiation
in the sideline direction (y) .
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