

Caractérisation statistique des structures tourbillonnaires de couche de mélange dans une interaction choc-couche limite

Lionel Larchevêque et Tetiana Jiang IUSTI, Aix-Marseille Université, UMR CNRS 7343

Réunion GDR Turbulence, 15 octobre 2012, Poitiers

Contexte

- Instationnarités basse-fréquence des décollements compressibles (ANR DECOMOS : Dynfluid, IRPHE, IUSTI)
- Lien possible avec la couche de mélange
 - battement de multiples modes de Kelvin-Helmholtz (Ehrenstein et Gallaire, JFM 2008)
 - entraînement de masse et remplissage de la bulle *(Piponniau et al., JFM 2009)*
- Caractérisation des structures cohérentes de la couche
 - détection
 - analyse statistique

Ecoulement de référence

Interaction choc-couche limite turbulente

- M=2.3 : effets de compressibilité présents
- $\operatorname{Re}_{\theta} \approx 5000$: couche amont pleinement développée

Mouvement du choc et respiration du bulbe : St ~ 0.03 (basses fréquences)

Couche de mélange et éjection St ~ 0.5 (moyennes fréquences)

Turbulence de couche limite convectée : (hautes fréquences)

Haddad et al., Piponniau et al., JFM 2006, 2009

Données disponibles

- Base de donnée IUSTI expérimentale et numérique
- Expériences :
 - écoulements de la séparation naissante au décollement complet.
 - LDV
 - PIV 2 et 3 composantes
 - pressions pariétales résolues en temps
- LES
 - Même angle de déviation que les expériences
 - Calcul à temps long : O(100) periodes des instationnarités BF
 - 25 To de données instationnaires

Tourbillons et couche de mélange (1)

Visualisations instantanées

Bas Reynolds Scalaire passif

Comte, Lesieur et Lamballais, PoF 1992

Larchevêque, Sagaut, Mary, Labbé et Comte, PoF 2003

Tourbillons et couche de mélange (2)

- Dans les interactions choc-couche limite turbulente
 - Reynolds plus élevé
 - forçage faible ou inexistant
- Numériquement : critères basés sur les dérivées de la vitesse

DNS, Pprime

Tourbillons et couche de mélange (3)

- Expérimentalement
 - caractérisations par statistiques en deux points (Haddad et al.)
 - association euristique à des structures tourbillonnaires
 - visualisations instantanées par critère intégral (Piponiau et al.)

- définition sensible à la vitesse de convection retenue
- influence de la turbulence amont ?
- pas ce caractère statistique
- Autres approches
 - POD : définition de la zone à considérer
 - DMD / modes de Koopman : pas de caractère statistique

Algorithme de recherche (1)

- Idée de base : déformation de la recirculation par les tourbillons
 - proximité de la couche de mélange et de la frontière de la bulle
 - structures cohérentes de relativement grande taille
- Caractérisation de la frontière de la bulle difficile :
 - instationnaire à haute fréquence
 - lignes de courant inadaptées • très tridimensionnel
- En stationnaire :
 - coïncidence ligne de courant de séparation ligne de débit nul
- Approximation instationnaire de la frontière h(x,t) :

• h(x,t) tel que :
$$\int_{0}^{E} \left[\int_{0}^{h(x,t)} \rho(x, y, z, t) u(x, y, z, t) dz \right] dy = 0$$

Ligne de séparation approchée

• Comportement instationnaire

• Analyse par double transformée de Fourier

- HF : convection à 300 m.s⁻¹
 - turbulence
- BF : stationnaire
 - respiration de la bulle ?
- MF : convection à 120 m.s⁻¹
 - tourbillons cohérents ?
 - dominant

Algorithme de recherche (2)

- $H(t) = \max_{x}(h(x,t) \overline{h})$
- X_h(t) : position de H(t)
- Tri des échantillons selon $X_h(t)$
- Division en 8 classes
- Moyenne sur chacune des classes

Vérification du caractère convectif de $X_h(t)$ • Branche convective basse vitesse Signal complet 1.5 1.5 × × 0.5 1000 1010 1020 1030 1000 1005 1010 1020 1025 1030 1005 1015 1025 1015 tU,/L tU,/L

Extraction des structures

- Calcul du critère Q à partir des moyennes de chaque classe
 - présence d'un tourbillon stationnaire (effet barocline)

- Soustraction du critère Q calculé à partir du champ moyen
 - permet d'éliminer le tourbillon barocline

Visualisation des structures

- Nombre d'échantillons par classe raisonnablement équilibré
 - convergence statistique correcte
- Localisation des structures indépendamment du temps
 - applicable à des données issues de PIV
 - caractère convectif à prouver

Mise en évidence de la convection

• amalgamation de plusieures structures ?

Trajectoire et vitesse de convection

• Calcul du barycentre pondéré par la valeur de Q

- Trajectoire : bon accord avec Piponniau et al.
- Vitesse : plus lente que Haddad et al. et Piponniau et al.
 - suppression de l'influence des structures de couche limite ?

Echelles temporelles associées

• Moyennes calculées à partir de champs pré-filtrés

- Structures dans la gamme $0,1 < St_L < 1$
 - similaire à Haddad et al. et Piponniau et al.

Généralité de la méthode

- Test préliminaires sur d'autre types d'interactions
 - réflexions avec décollement moins importants
 - réflexions avec couche limite chauffée
 - rampe de compression
- Résultats assez similaires à la réflexion pleinement décollée

• Applicable à d'autres types d'écoulement décollés ?

Conclusions et perspectives

- Méthodes statistique de caractérisation des tourbillons
- Ne nécessite pas de résolution en temps
 - Applicable aux données expérimentales
- Localisations Fréquence
 en bon accord avec les travaux précédents
- Vitesse plus lente : influence de la turbulence ?
- Etirement apparent des structures : amalgamations ?

- Caractérisation des échelles spatiales conditionnelles
- Etude détaillée d'autre interactions.