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Motivation

Numerous reasons to investigate turbulence decay.

Here focus on understanding meaning of ε equation (dissipation rate),
for instance and foremost in RANS models.

According to Pope (2000):

“The dissipation equation is frequently blamed for poor performance
of a model. For many flows, much improved performance can be
obtained by altering the model constants (Cε1 or Cε2) or by adding
correction terms. No correction to the dissipation equation that is
effective in all flows has been found.”

S.B. Pope (2000) Turbulent flows, §11.10, pp.461-462

First step: understand turbulence relaxation in simplest case:
Homogeneous Isotropic Turbulence (HIT).

k ∝ t−n , n ≈
∣∣∣∣ 1.2 (±.1) experiments,

less than 1, up to 1.45 simulations.

Introduced and studied since 1930’s,
brilliantly interpreted by Landau (1944), but result incompatible with exp. data,

revisited recently (Davidson 2000–2009, Llor 2006, 2011).
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Self-similar decay of HIT

Since Kolmogorov (1940), if HIT decays in a self-similar way,
then it has to preserve some invariant quantity, I.

Self-similarity means self-similarity of all relevant average quantities,
first of all, the spectrum over energy containing range:

E(t, κ) ∝ k(t) `(t) E[`(t)κ] where κ is wave number.

If ` is integral length scale and k turbulent energy, general invariant is I = k`m

Note: common but misleading wisdom is that
“HIT eventually forgets initial conditions and then must behave in a self-similar way.”

NOT TRUE IN GENERAL!

As d
dt

I = 0, and d
dt

` ∝
√

k or d
dt

k ∝ −k
3/2/` by dimensional analysis, solving ODEs yields:

k ∝ t−n, n =
2m

2 + m
, ` ∝ tθ, θ =

2

2 + m
.

Kolmogorov assumed m = 5 from Loitsyanskii (1939)
and thus n = 10/7 ≈ 1.429, significantly off experimental results.

Now, what are I and m, and how are they produced?
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Kármán–Howarth equation and Loitsyanskii’s invariant

[Navier–Stokes equation](x)⊗ u(x + r),

⇓
homogeneity, isotropy, incompressibility,

calculation, no new physics!
⇓

Kármán–Howarth equation

∂t

[
k(t)r4f(t, r)

]
= k

3/2(t)∂r

[
r4K(t, r)

]
− 2νk(t) ∂r

[
r4f ′(t, r)

]
,

where f and K are the normalized two-point double and triple longitudinal velocity correlation functions:

f(r) = ur(x)ur(x + r) / (2/3k),

K(r) = u2
r(x)ur(x + r) / (2/3k)

3/2.

Now, integrate over r = 0 to ∞ and neglect ν (high Reynolds number)

∂t I = ∂t k

∫ ∞

0
f(r)r4dr = k

3/2

[
r4K(r)

]∞
0

= 0, if K(r) ∼ o(r−4),

⇒ invariance of Loitsyanskii’s integral .
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Landau’s interpretation of Loitsyanskii’s invariant

Landau (1940) gave intuitive explanation of Loitsyanskii’s invariant
as variance of per volume angular momentum at big scales:

H(D) =

∫
V (D)

r × u d3r ∼ `
√

k × `3 ×
√

D3

`3
,

thus:

I = k

∫ ∞

0
f(r)r4dr ≈ lim

D→∞

〈H(D)2〉
V (D)

∝ k`5 .

For large enough D, torque becomes negligible (surface to volume ratio),
and thus I should be invariant.

Brilliant insight (only seven sentences in textbook without equations),
. . . but “wrong result” because effective calculation not done!

5



Outline

I. Motivations; Landau’s angular momentum invariance

II. Langevin stochastic equation of Landau’s invariant

III. Relationship between correlations at big scales and relaxation

IV. Decay of slab, tube and spot of turbulence; impact on ε

6



Landau’s interpretation in mathematical form:
Langevin equation of angular momentum at big scales

From Euler equation (viscosity irrelevant) ρ∂tui + ρ(uiuj),j + p,i = 0,
volume integration yields Langevin like equation:

d
dt

HV
i = T V

i ,

where fluctuating angular momentum and torque are (pressure eliminates):

HV
i (t) =

∫
V

εijk rj uk d3r, T V
i (t) = −

∮
∂V

εijk rj uk ul σl d2r.

Therefore :
d
dt

HV
i HV

i = 2T V
i HV

i .

T and H must normally be expressed from u(t, r), but yields usual Kármán–Howarth equation,
whereas spirit of Landau’s approach is in direct correlation between T and H .

T V
i

?
= T V

i

(
HV

i

)
so T V

i (u)HV
i (u) T V

i

(
HV

i

)
HV

i  HV
i HV

i

(
k, `, D

)
.
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First scalings: HV
i HV

i and TV
i HV

i

Simple but tedious calculations yield (V dropped from now on)

HiHi =

∫∫
V

εijkεij ′k′ rjrj ′ uk(r)uk′(r′) d3r d3r′

= . . .

= D 4 π2

6
k

∫ D

0

(
1−

s2

D2

)(
1−

2s2

D2

)
f(s) s3 ds,

and

TiHi = −
∮∫

V

εijkεij ′k′ rjrj ′ uk(r)ul(r)uk′(r′)σl d2r d3r′

= . . .

= D 4 π2

6
k

3/2

∫ D

0

(
1 +

3s2

D2
−

6s4

D4

)
K(s) s2 ds.

Depending on convergence of integrals of f and K, scaling as at least D4 of both terms,
instead of Landau’s original estimates of D3 and D2, but still no new physics (∼KH equation)!

8



Two different approaches to close Ti and TiHi

• Mean correlation of Ti with Hi: introduce 〈Ti〉H , the H-conditional or sub-ensemble mean of Ti.
Isotropy and weak Ti–Hi coupling yield

〈Ti〉H = −ωHi.

• Slow + fast decomposition of Ti: introduce T ∗
i , the “fast” component of Ti.

Isotropy and weak Ti–Hi coupling yield

Ti =

∣∣∣∣ −ΩHi + T ∗
i ,

−ωHi + T ′
i .

with T ∗
i (t)T

∗
i (t0) ≈ 0 for |t− t0| & `/

√
k

Ti(t)Ti(t0) =

∣∣∣∣∣∣∣∣∣∣∣∣

Ω(t)Ω(t0) Hi(t)Hi(t0)︸ ︷︷ ︸
slow

− Ω(t) Hi(t)T ∗
i (t0)−Ω(t0) T ∗

i (t)Hi(t0)︸ ︷︷ ︸
slow + fast, 6= 0 at t = t0

+ T ∗
i (t)T

∗
i (t0)︸ ︷︷ ︸

fast

,

ω(t)ω(t0) Hi(t)Hi(t0)︸ ︷︷ ︸
slow

− ω(t) Hi(t)T ′
i(t0)− ω(t0) T ′

i(t)Hi(t0)︸ ︷︷ ︸
slow + fast, = 0 at t = t0

+ T ′
i(t)T

′
i(t0)︸ ︷︷ ︸

slow + fast

.
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Viscous closure

From:

〈Ti〉H = −
∮

∂V

εijk rj 〈uk ul〉H σl d2r = −
∮

∂V

εijk rj 〈(uk − 〈uk〉H) (ul − 〈ul〉H)〉H σl d2r,

a “turbulent viscosity” assumption (Cµ
?
≈ .09 at the moment)

〈(ui − 〈ui〉H) (uj − 〈uj〉H)〉H = 2
3

k δij − Cµ`
√

k (〈ui〉H,j + 〈uj〉H,i),

. . . and a weak coupling assumption

〈ui(r)〉H = Mij(r)Hj, with ui(r)Hj = Mij(r)HkHk/3,

where

ui(r)Hj =

∫
V

εjkl rk ui(r)ul(r′) d3r = · · · =
π

12
k εijkrk

∫ D/2+r

|D/2−r|
P2

(D2

r2
,
s2

r2

)
f(s) rs ds.

Leads eventually to

d
dt

HiHi

(π2/6)D4
= −

2ωHiHi

(π2/6)D4
=

Cµ

4
`k

3/2

[
D2f(D) +

∫ D

0

(
1 +

6s2

D2
−

18s4

D4

)
f(s) s ds

]
.
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Incidentally: profiles of 〈u(r)〉H

Interesting profiles of reduced conditional velocity

U(r) =
〈u⊥(r⊥)〉H√

2k
=

3u⊥(r⊥)H‖√
2k HiHi

,

for f(s) ∼ s−m, and small `/D = .1 to .01.

Weak coupling approximation is well supported.

Solid like rotation of sphere for m = 3 (Saffman correlation).

Shear layer at sphere’s surface for m = 5 (Batchelor correlation).
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Noise closure

Difficulties: T V ∗
i (t) not well-defined (slow–fast separation), non white, non stationary. . .

Requires various “reasonable” assumptions, mainly Ω/ω constant—but no “turbulent viscosity.”

Therefore (less trivial, Cτ
?
≈ 1/8 estimated) :

d
dt

Hi(t)Hi(t) = −2Ω(t) Hi(t)Hi(t) + 2T ∗
i (t)Hi(t)

= −2Ω(t) Hi(t)Hi(t) + 2

∫ t

−∞
T ∗

i (t)T
∗
i (t1) e−

∫ t

t1
Ω(t2)dt2 dt1

= −2Ω(t) Hi(t)Hi(t) + 2 τ∗(t) T ∗
i (t)T

∗
i (t),

= . . .

= . . .

= . . .

= −2 τ Ti(t)Ti(t)

= −2Cτ
`√
k

Ti(t)Ti(t).
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Now

τTiTi = τ

∮∮
V

εijkεij ′k′ rjrj ′ uk(r)ul(r)uk′(r′)ul′(r′)σlσl′ d2r d2r′

= . . .

= D4π2

6

4Cτ

3
`k

3/2

∫ D

0

[(
1−

2s2

D2

)(
1−

3s2

D2

)
g2(s) +

(
1−

4s2

D2

)(
1−

s2

D2

)
h2(s)

−
s2

D2

(
1−

s2

D2

)[
f1(s)− 2g1(s) + h1(s)

]]
s ds,

with five two-point fourth-order normalized velocity correlation functions (r − r′ along z)

g2 = (zx|zx), h2 = (xy|xy), f1 = (zz|zz), g1 = (zz|xx), h1 = (xx|yy).

Old “quasi-normal” trick, here very good (with second-order transverse g(s) = f(s) + sf ′(s)/2):

g2(s) = f(s) g(s), h2(s) = g(s) g(s), f1(s)− 2g1(s) + h1(s) = 2 f(s) f(s).

Hence

d
dt

HiHi

(π2/6)D4
= −

2τTiTi

(π2/6)D4
=

8Cτ

3
`k

3/2

∫ D

0

[
O(1)f(s) g(s) + O(1)g2(s)− O( s2

D2)f
2(s)

]
s ds .
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Expansion at D →∞ of HiHi evolution equation

Expand f(s) at big scales (2 < m < 4, can be extended)

f(t, s) = fm(t) (s/`)−m + o(s−4) for s & `(t),

⇒ g(t, s) = (1−m/2)fm(t) (s/`)−m + o(s−4)

Then [two apparently different closures of same process → fluctuation–dissipation theorem]

dt
HiHi

(π2/6)D4
=

∣∣∣∣∣∣∣∣∣
−

2ωHiHi

(π2/6)D4
, viscous closure,

−
2τTiTi

(π2/6)D4
, noise closure,

expands in D as

HiHi

(π2/6)D4
=

2mfmk`mD4−m

(4−m)(6−m)(8−m)
+ k D0

∫ ∞

0

[
f(s)− fm

(`

s

)m
]

s3ds + o(D0),

2ωHiHi

(π2/6)D4
=

Cµ

√
k

2`
k`2D0

∫ ∞

0
f(s) s ds + o(D0),

2τTiTi

(π2/6)D4
=

8Cτ

√
k

3`
k`2D0

∫ ∞

0

[
g2(s) + f(s)g(s)

]
s ds + o(D0),
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First consequence: threshold of self-similar relaxation

Behavior of f at big scales determines invariance conditions:

m < 4 dt(fmk`m) = 0,

4 < m dt

∫ ∞

0
kf(s) s3ds = . . . .

Proves “permanence of big structures” for m < 4.

Adding a self-similarity assumption to m < 4 case

dtfm = 0 then dt(k`m) = 0

Invariance is only marginal at m = 4, and m = 5 (Batchelor) is NOT invariant.

Now, coefficients in . . . very small, make m = 5 “almost invariant”,
with apparent n above 4/3 (m = 4), but below 10/7 Kolmogorov (m = 5).
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A next order effect: viscosity coefficient Cµ

Consider self-similar case at m < 4; identifying D0 terms yields

m− 4

m

∫ ∞

0

[
f(s)− fm(`

s
)m

] s3ds
`4

=
Cµ

2

∫ ∞

0
f(s)

s ds
`2

,

Expression depends critically on behavior of f(s) at “intermediate” and big scales, s & `,
where theoretical, experimental, and numerical data are practically nonexistent (fm =?).

Here assume piecewise C1 connection between inertial range and pure ξ−m at big scales (ξ = Cks/`)

f (2)(ξ) =

∣∣∣∣∣∣∣∣
1− ξ

2/3 +
m

2(m + 2)
ξ2 for ξ ≤ ξc =

( 3m/2

m + 2/3

)3/2

,

4/3

(m + 2)(m + 2/3)

(ξc

ξ

)m
for ξ > ξc.

(assumptions supported by the scarce known results).

Then

C(2)
µ (m) = C−2

k

9m2(m− 2)

7(m + 2/3)3
.
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Results are relatively independent of precise f(ξ) profile (if not mixed at big scales)

Amplitude fm is relatively constant,
and Cµ(3) is close to the “accepted” empirical value of .09.

18



Outline

I. Motivations; Landau’s angular momentum invariance

II. Langevin stochastic equation of Landau’s invariant

III. Relationship between correlations at big scales and relaxation

IV. Decay of slab, tube and spot of turbulence; impact on ε

19



Saffman’s projection procedure

Saffman (1967) proposed procedure to generate a (random) velocity field:

• give impulse field, constrained at will, i

• take divergence free component of i: u = i−∇q, where ∆q = ∇ · i

Examples:

Saffman E(κ ∼ 0) ∼ κ2 Batchelor E(κ ∼ 0) ∼ κ4

Simple impulse fields can be produced for any type of infrared spectrum power µ.

Now, Saffman’s procedure preserves H , and also the D-scaling of T
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Saffman’s procedure and angular momentum

One does not need complicated maths to obtain D-scalings (back of the envelope):

• contributions to variances from different structures are fully uncorrelated.
• watch for torque scaling (no in-structure cancellations on surface).

Then variances of angular momentum and torque are:

Fluid element
contribution

Large
eddie,

correlated
volume

Big sphere,
uncorrelated

eddies

D scaling
× possible

invariant
I

HiHi ∝
∣∣∣∣ Saffman (

√
k D )2

Batchelor (
√

k ` )2

∣∣∣∣ × (`3)2 ×
D3

`3
=

∣∣∣∣∣ D5 k `3

D3 k `5

TiTi ∝
∣∣∣∣ Saffman (k D )2

Batchelor (k D )2

∣∣∣∣ × (`2)2 ×
D2

`2
= D4 k2`2

Thus, when D →∞, HiHi becomes invariant if it grows faster than D4.

Saffman’s correlation in E ∝ κ2 is invariant with I = k`3.

Batchelor’s correlation in E ∝ κ4 is not invariant,
Loitsyanskii’s integral is not constant and Kolmogorov’s n = 10/7 cannot be reached.
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Impulsive approach on layer, tube, and spot

Question: is it possible to analyze inhomogeneous situations:

Detailed calculations (Kármán–Howarth) are untractable.

But big scale behavior with impulsive approach could.

What do we need? See pictures:

• symmetrical control volume (to cancel pressure),

• negligible surface effects at big scales,

• thus check (or adapt) to cancel influence of laminar regions (technicality).
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Decay exponents for layer, tube, and spot

“Back of the envelope” calculations again.

Batchelor type correlations appear as never invariant.

Results for Saffman correlations and marginally invariant correlations:

Geometry HIT Layer (IRM) Tube
d (dilution) 0 1 2
Invariant type Saffman Maximum Saffman Maximum S. & B. Spin
m 3 4 4 5 7 6
n 6/5 4/3 4/3 10/7 14/9 3/2
1− n/2 (` growth) 2/5 1/3 1/3 2/7 2/9 1/4
Cε2 11/6 7/4 2 15/8 19/10 2

Some of these values have been found independently by Chasnov and Inogamov,
but with numerous assumptions and calculations.
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“0D” reduction of k–ε model

for HIT, layer (RM), tube, and spot

Most models reduce to usual k–ε for free turbulent decay.

When reduced by “0D” averaging over mixing zone, k–ε yields coupled ODEs:

d
dt

k = −d
d
dt

`

`
k − ε,

d
dt

ε = −d
d
dt

`

`
ε− Cε2

ε2

k
,

where, in dilution terms, d = 0, 1, 2, 3 for HIT, layer, tube and spot.

Cε2 is determined if given flow with invariant m is to be captured:

Cε2 =
3

2
+

1 + d/2

m− d
.
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Values in previous table for various d and m, show:

• Small variations around Cε2 = 2.

• Larger variations are obtained with other “equivalent” variables
(k–`, k–ω, k–ν. . . ).

• Usual approach
“adjust Cε2 to capture HIT and then apply to other flows as mixing layers,”

is acceptable but not accurate (Cε2 = 11/6 ≈ 1.83 instead of 2).

• Difference between layer and tube (Cε2 = 2 or 19/10)
consistent with growth of plane vs round jets .

• Improving ε equation thus requires some sensing of TMZ dimensionality ,
but present findings do not tell us how. . .
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Two brain teasers. . .

1. Influence of dissipation process in decay laws.

Decay laws are independent of spectrum slope in inertial range (i.e. E(κ) ≈ ε2/3κ−5/3):
only requirement is preservation of slope, whatever it is, during decay (self-similarity).

Question: why, then, is decay independent of actual nature of dissipation process?

Answer: conservation laws at large scales constrain decay,

similarly to perfectly inelastic collision of two bodies :
final state is entirely determined by momentum conservation,

regardless of actual dissipative process of excess energy
(rotation, vibration, heat, radiation. . . )

2. Significance of ε in modeling.

ε model equation commonly derived from:
• statistical “one-point” dissipation equation, ε = 2νsi,jsi,j (often),
• spectral flux at integral length scale, ε = C (k3/2/r)

(
1− f(r)

)3/2 at r � ` (seldom).

Conclusion: all this is “thin air,” since ε, as effectively acting in models,

is determined solely by big scale behavior, ε = C (k3/2/r) f−1/m(r) at r � `.
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Complementary slides
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Self-similar decay of turbulent energy spectrum

Self-similarity means self-similarity of all average quantities,
first of all, the spectrum over energy containing range:

E(t, κ) ∝ k(t) `(t) E[`(t)κ] where κ is wave number.

Self-similarity over many orders of magnitude is required for precise observations.
Here, show Lesieur’s EDQNM shell-model “simulations.”

EDQNM is exact in the infrared limit, around κ ∼ 0.

Numerical resolution of EDQNM yields behavior of self-similar infrared spectrum:

E(t = 0, κ ∼ 0) ∝ J κµ

 µ ≤ 3 invariance of J = I, “permanence of big structures”
3 < µ ≤ 4 J(t) 6= I time dependent, slow self-similar growth,
4 < µ quick transition to µ = 4, in about `/

√
k

Dimensional analysis thus yields I = k`m with m = µ + 1 for µ ≤ 3.

The permanence of big structures has been proved recently
(no longer a conjectured principle based on observed behavior,

A. Llor, Eur. J. of Mech. B – Fluids, in press (2011)).
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Lesieur’s et al. (2000) EDQNM model results

Starting from “peaked” κ8 spectrum at t = 0:

κ4 spectrum is produced in a few turn-over times (backscattering).

Notice 12 decades in E,
5 decades in inertial range of κ,

1 decade in infrared range of κ.
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. . . but E(κ)/κ4 ∼ I(t) = k`5 is not exactly invariant, and thus n < 10/7:

E(0, κ ∼ 0) ∼ κ 6 κ 4
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. . . and for more shallow spectra, rigorous invariance is found:

E(0, κ ∼ 0) ∼ κ 3 κ 2 κ 1

I = k` 4 k` 3 k` 2

n = 4/3 6/5 1

θ = 1/3 2/5 1/2

This is the “permanence of big eddies,” each with own invariant.
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