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Introduction

Problem description

Direct numerical simulations: no turbulence models.

High speed combustion regimes: Scramjet engines.

Gas mixtures: hydrogen, air . . .
Multicomponent transport.
Detailed reaction mechanisms.

Compressibility effects.

Shocked configurations.
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Introduction

Previous works
Previous works dealt mainly with temporally evolving mixing
layers, i.e. parallel flow assumption.

Few examples of spatially developing mixing layers referred only
to non reactive conditions (air flows).

Infinitely fast chemistry assumptions/tabulated chemistry
simplifications.
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Governing equations
Fully compressible formulation, multicomponent reactive mixtures:

∂t (ρ) +∇ · (ρu) = 0, (1)
∂t (ρu) +∇ · (ρu ⊗ u + PI) = ∇ · τ, (2)

∂t (ρet ) +∇ · [(ρet + P) u] = ∇ · (τu − q) , (3)
∂t (ρYα) +∇ · (ρYαu) = −∇ · (ρYαVα) + ρω̇α, α ∈ S. (4)

et = u · u/2 + Σα∈ShαYα −RT , (5)

τ = µ
(
∇u + (∇u)t

)
+ (κ− 2µ/3) (∇ · u) I, (6)

q = Σα∈SρYαVα (hα +RT χ̃α/Wα)− λ∇T , (7)
ρYαVα = −ρYαΣβ∈SDαβ (dβ + Xβχ̃β∇T/T ) , (8)

dα = ∇Xα + (Xα − Yα)∇P/P. (9)
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Governing equations

P = ρRT/W, W = (Σα∈SYα/Wα)−1 , (10)

cpα (T ) = RW−1
α φα, (11)

hα (T ) = RTW−1
α ϕα. (12)

Remarks
φα and ϕα: polynomial representation (JANAF tables).

Multicomponent transport (Soret and Dufour): EGLIB librarya.

Chemical reactions: DVODE (CHEMKIN II libraryb).

a
A. Ern and V Giovangigli. Fast and accurate multicomponent transport property evaluation. J. Comput. Physics

120, 105-116, (1995).
b

R. J. Kee, F. M. Rupley and E. Meeks. CHEMKIN-III: A Fortran Chemical Kinetics Package for the Analysis of
Gas-Phase Chemical and Plasma Kinetics. Sandia National Laboratories (1996).
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Numerical methods
Spatial discretization

Convective fluxes: 7th order accurate Weighted Essentially Non
Oscillatory (WENO) schemea.

Molecular fluxes: 8th order accurate centered difference scheme.
a

Y. Shen and G. Zha. Improved seventh-order WENO scheme. AIAA Paper 2010-1451 (2010).

Temporal integration: Strang splitting techniquea

a
R. P. Fedkiw, B. Merriman and S. Osher. High accuracy numerical methods for thermally perfect gas flows with

chemistry. J. Comput. Phys. 132, 175–190, (1997).

1 t → t + ∆t/2 : DVODE solver.

2 t → t + ∆t : 3th order accurate Total Variation Diminishing (TVD)
Runge Kutta scheme.

3 t + ∆t/2→ t + ∆t : DVODE solver.
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Multi-species reactive shock tube
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Riemann problem with a discontinuity at t=0.

Focus on the competition between convection and reaction terms.

Shock hits a solid wall boundary and reflects off.

A reaction wave kicks in picking up steam and merges with the shock.
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One-dimensional hydrogen/oxygen laminar
premixed flame
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Similar orders of magnitude for convection, diffusion and reaction.

PREMIX reference solution retained as the initial condition.

Progress variable defined as: c = (T − Tu)/(Tb − Tu).
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Cheng approximate conditions

Overview
Conditions representative of Scramjet engine operations.

A reference benchmark for supersonic combustion modeling.

Available experimental dataa.

Different reaction mechanisms:
1 Marinov reaction mechanism: 3 species, 1 step calibrated

reaction.
2 Jachimowski reaction mechanism: 13 species, 33 reactions.
3 O’ Conaire reaction mechanism: 9 species, 19 reactions.

a
T. S. Cheng, J. A. Wehrmeyer and R. W. Pitz. Raman measurement of mixing and finite-rate chemistry in a

supersonic hydrogen-air diffusion flame. Combustion and Flame 99, 157-173, (1994).
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Shear layer configuration

uf

uo

Lx × Ly = 350δ0
ω × 90δ0

ω with Nx × Ny = 2085× 455.
Rω = ρ̄∆uδ0

ω/µ̄ = 640, Mc = ∆u/(cf + co) = 0.4.

Fuel (top) Oxidizer (bottom)

uf = 1949.08 m/s uo = 954.55 m/s
Pf = 109 KPa Po = 109 KPa
Tf = 545 K To = 1250 K
YH2 = 1.0 YO2 = 0.245, YN2 = 0.58, YH2O = 0.175

ρf = 0.049 Kg/m3 ρo = 0.28 Kg/m3

cf = 1949 m/s co = 955 m/s
Mf = 1.1 Mo = 1.34
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Instantaneous fields
Numerical Schieleren of the pressure field.
Temperature iso-contours: Tmin = 400 K, Tmax = 3100 K.

Mc = 0.4

Mc = 0.8
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Self-similarity profiles (Mc = 0.4)
Favre averaged streamwise velocity component
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Self-similarity profiles (Mc = 0.4)
Reynolds shear stresses
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σvv =
√
< v ′′v ′′ >f/∆U.

σuv =
√
< u′′v ′′ >f/∆U.
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Vorticity thickness growth rate (Mc = 0.4)
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Cheng approx. conditions: conclusion

Reθ σuumax σvvmax σuvmax Kδ Type Reference

− 0.176 0.138 0.097 0.190 Experimental Wygnanski & Fiedler (1970)
− 0.190 0.120 0.114 0.160 Experimental Spencer & Jones (1971)

450 0.180 0.140 0.100 0.163 DNS-3D Bell & Mehta (1990)
800 0.160 0.130 0.100 0.130 DNS-3D Rogers & Moser (1994)
90 0.200 0.290 0.150 0.143 DNS-2D Stanley & Sarkar (1997)

160 0.220 0.220 0.110 0.150 DNS-2D Inert simulation (Mc = 0.4)
160 0.220 0.180 0.070 0.220 DNS-2D Reactive simulation (Mc = 0.4)

Concluding remarks

Self-similarity in both inert and reactive cases.

Shear stresses overestimated in 2D inert simulations.

Heat release decreases significantly the Reynolds shear
stresses and modifies Kδ.
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3D simulations

Iso-contour of Q = 0.01×Qmax colored by the mixing variable,
inert case at Mc = 0.4.

Lx × Ly × Lz = 300δ0
ω × 60δ0

ω × 22δ0
ω,

Nx × Ny × Nz = 1441× 307× 131.
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Conclusions and future works

Conclusions
Cheng approximate conditions case confirms reduction of the
Reynolds shear stresses.

Moderate heat released effect with detailed reaction
mechanisms compared to one step reactions.

Future works
Influence of the inflow conditions (inflow oxidizer temperature,
convective mach number. . . ).

3D turbulent numerical simulations.

Turbulent kinetic energy budget.

Scalar turbulent transport.
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