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I. ONERA’s LAERTE test facility for fundamental study  of supersonic 
combustion. Model supersonic combustor (scramjet). Experimental data

• Operating conditions
• Pressure distribution: a) weak and b) abrupt self-ignition modes
• Instantaneous OH-PLIF images
• Two types of self-ignition : a) weak self-ignition mode, b) abrupt self-ignition mode

II. LES simulation of weak self-ignition mode. Comparison with experiment

III. Unsteady RANS simulation of abrupt self-ignition mode. Comparison with 
experiment 

Conclusions
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LAERTE test facility (1/3)

• Coaxial fuel injection: adapted static pressures injection

• Constant section during the first 370 mm of the duct, after diverges with a 
half-angle of 1.15°
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Experimental optical facility (OH-Ac PLIF)

Laser

Filtre

ICCD

Filtre OH

1 laser : 2 caméras
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Structure of supersonic mixing layer – OH-PLIF

close from the injector far from the injector

6<x/d<14 26<x/d<34

pockets with size less 1 mm in intermittent 
combustion. Pockets composed of fuel and 
air coming from the external boundary 
layer of the injector. Temperature of this 
air: 1600K (close from stagnation 
temperature de la temperature of 1850 K)

« large » pockets with a characteristic size of 5 
mm in combustion, composed of hot air, fresh 
fuel and burnt gases.

2 different regions in the flow
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OH

Acetone

Instantaneous OH-PLIF images (pure H2 jet)

Main characteristics of the self-ignition process:

• self-ignition has a spotty character and appears in the form of random pockets

• self-ignition involves the intricate interplay between the mixing and the 
chemistry
• each pocket has its unique history, as a consequence mixing and self-ignition
chemistry cannot be decoupled

• flamelet models are not adequate for LES modeling self-ignition of supersonic 
fuel jet in hot supersonic air stream

close to the injector far from the injector
6<(x-xinj)/d<15                                                          26<(x-xinj)/d<34

(The flow is from left to right)
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Wall pressure measurements
• Pressure transducers

• 80 channels distributed on the top and on the bottom of the 
combustion chamber

• Locations:
• step of 10 mm on the first 150 mm of the duct
• step of 15 mm between 150 mm < x < 370 mm
• step of 30 mm between 370 mm < x < 870 mm

• Pressure rise characterizes the amount of heat rele ase
• evaluation of auto-ignition by comparing reacting and non-
reacting cases

LAERTE test facility (3/3)
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Two types of autoignition

• weak ("smooth") mode:
• progressive and moderate heat release
• wall pressure profile with a low rise of pressure due to 
combustion

• "abrupt " mode:
• sudden and brutal heat release 
• wall pressure profile with a large rise of pressure due to 
combustion 
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Pure hydrogen fuel jet: mass rate 6.2 g/s,  x0=33mm 26% C2H4 / 74% H2 mixture fuel jet:

mass rate 12.8 (C2H4) g/s+ 2.6 (H2) g/s

Self-ignition length – 15 cm                         Self-ignition length – 25 cm

• The flow is supersonic throughout the combustor

Weak (smooth) mode of self-ignition. Pressure 
distributions along the combustor

Experimental data (1/2)
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Pure hydrogen jet (1998), mass rate: 6.2 g/s

Experimental data (1/2)

73% methane/27% hydrogen jet (mass 
fractions) mixture (2004), 

mass rate: 7.4 g/s CH4+2.8 g/s H2

Self-ignition lengths are:

� 15 cm for H2,  

� 33 cm for CH4- H2 mixture
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Abrupt mode of self-ignition. Pressure distribution 
along the combustor

• Abrupt mode arises if content 
C2H4 exceeds 29% (molar 
fraction)

50% C2H4 / 50% H2 mixture fuel jet
mass rate: 16.2 (C2H4) g/s + 1.2 (H2) g/s

• thermal chocking takes place

• subsonic region appears between 0.4 
m < x-xo< 0.63 m

1D calculation. Mach number distribution 
for 50% C2H4 / 50% H2 mixture fuel jet

Experimental data (2/2)

Self-ignition length is about  35 cm
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• 2 scenarios  based on observations
Smooth mode

• at the stagnation temperature 1850K and entrance Mach numberM=2, the self-
ignition of pure hydrogen starts smoothly
• with the increase of the ethylene concentration in the ethylene/hydrogen mixture  
and for CH4/H2 mixture the delay length of self-ignition increases

Abrupt mode
•at some critical value of ethylene concentration self-ignition starts suddenly and 
strongly.

• Importance of mixing time
• with increasing of an air/fuel premixing (i.e. after fuel injection), self-ignition 
can be brutal such as for premixed mixtures
• interaction between chemistry an mixing (turbulence) controls the self-ignition 
regime 

Synthesis of experimental results
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LES subgrid flow model – Smagorinski model
LES combustion model – PaSR-Vulis model
Chemical mechanisms:

• H2 : Jachimowski - 7 species / 9 reactions
• CH4/H2 : Davidenko – 21 species / 79 reactions
• C2H4/H2: Singh - 9 species /10 reactions

LES simulations of weak self-ignition mode
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LES Combustion Model: PaSR – Vulis model
Multi-scale model based on the assumption that reactions take place 
on the smallest fine structures (*) embedded in the surroundings (0)

Subgrid balance equations
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pure hydrogen reacting case (experiment 1998):

wall-pressure profiles
• good estimation of ignition delay 
and pressure level for pure hydrogen 
(same behaviour for 2004 case)

• no influence of PaSR-VM: 
hydrogen is highly reactive - no need 
to been well mixed to air for burning

LES simulations: pure H2 jet

tsim=10 ms
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instantaneous snapshots

LES simulations: pure H2 jet

Static pressure

OH radical (red) and vorticity
field

H2 field

H2O field

Static temperature
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LES simulations: pure H2 jet

combustionηηηηc and mixing ηηηηm efficiencies
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Self-ignition lengths:

• 33 cm in the experiment

• 33 cm with EVM

• 25 cm without EVM

LES without EVM overestimates the
pressure rise due to heat release in the
region 25 cm <(x-xinj )/d< 50 cm

LES simulations: CH4/H2 mixture jet
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LES simulations: CH4/H2 mixture jet
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wall-pressure profiles
• Pressure levels are in both cases under-
estimated

• EVM gives better self-ignition delay

• Simulation time might be too short

• 1D analysis shows to possibility of 
thermal shocking (heat release greater than 
the critical value)

• LES is too expensive, RANS will be 
used to study the thermal shocking regime

LES simulations: C2H4/H2 mixture jet

tsim=10 ms
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URANS simulations of abrupt self-ignition 
mode: C2H4/H2 mixture 

50% C2H4 / 50% H2 mixture fuel jet
mass rate: 16.2 (C2H4) g/s + 1.2 (H2) g/s
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• Advantage to be “easy”, cheap & gives good information on crucial 
parameters of the flow. Takes into account the skin friction & heat losses of 
the experimental combustion chamber (based on experiments)

•

• Critical value for heat release in the test tube

One-dimensional analysis of the flow
Thermal shocking investigation (1/2)

˜ Q cr = 0.50

• pure hydrogen = 0.47

• methane/hydrogen mixture = 0.43

• ethylene/hydrogen = 0.58
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Mach number distribution for the different fuels 
studied

One-dimensional analysis of the flow
Thermal shocking investigation (2/2)

Mach number distribution Heat release distribution

•The ethylene/hydrogen mixture is able to be “thermal  shocked”

• Thermal choking could explain the different modes o f combustion

• RANS approach is chosen for this study of thermal s hocking regime
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URANS simulation results (1/4)

Observations:

• Self-ignition is premature that explained by 
neglecting turbulence-chemistry interaction

• Transient period from initial state lasts a long 
time –35 ms (35 residence time)

• Maximum pressure rise is in good agreement 
with experiments

• Pressure is essentially non-steady

• Pressure waves moves upstream and
downstream with amplitude about 3 cm, and 4.2 
bar amplitude

• Power pressure spectrum has the peak of 580 
Hz (1.72 ms oscillation period)Pressure FFT
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URANS simulation results (2/4)

Observations:

•Unsteady behaviour of self-ignition 
(heat release in the duct)

•Bifurcated shocks (Mach structure)

• Shock train region is formed in 
which pressure build-up develops

• The formation of OH starts at
(x-xo) ≈ 21 cm

Instantaneous pressure ant static temperature snapshots
Unsteady behaviour of self-ignition (heat release i n the duct). Mach structures are 
observed
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URANS simulation results (3/4)

Axial evolution of velocity profiles in transonic z one

Observations:

• Mean Mach numberMF is less than one in the domain 37.5 cm < (x-xo) < 49 cm

Transversal Mach number profiles in the
transonic zone, arrow points in the direction 
of x rise

Cross-area mean Mach number axial 
distribution
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Maximal total temperature

along the combsutor

Combustion and mixing efficiencies

along the combustor

Observations:

• The combustion is mixing controlled

• Practically overall heat release 
occurs on 5 cm length

URANS simulation results (4/4)

Combustion ηηηηc and mixing ηηηηm efficiencies
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The more hydrocarbon we have, the more mixing is important for premixing
followed by burning 20 cm for H2, 10 cm for CH4/H2 and 6 cm for C2H4/H2

Mixing/Combustion Efficiencies

pure hydrogen

methane/hydrogenmi
xture

ethylene/hydrogen 
mixture (LES)

ethylene/hydrogen 
mixture (RANS)

mixing
chemistry
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Conclusions

• Self-ignition of H2, C2H4/H2 and CH4/H2 jets in a supersonic vitiated 
confined flow is studied. Two modes are found

- weak mode – thermal chocking is absent
- abrupt mode – with following thermal chocking

• Weak mode was simulated with LES
• Abrupt mode was simulated with URANS

- abrupt mode is essentially non-steady

- the flow oscillations are driven by interaction between thermalchoking and
upstream fuel-air mixing

• Additional study is needed to establish which mechanism between two :
- acoustic, through local subsonic zone
- pure gas dynamic, by impact of heat release fluctuations on the thermal 
chocking position

is in the origin of flow oscillations


