

## Content

I. ONERA'S LAERTE test facility for fundamental study of supersonic combustion. Model supersonic combustor (scramjet). Experimental data
Operating conditions
Pressure distribution: a) weak and b) abrupt self-ignition modes
Instantaneous OH-PLIF images
Two types of self-ignition : a) weak self-ignition mode. b) abrupt self-ignition mode
ILES simulation of weak self-ignition mode. Comparison with experiment
III. Unsteady RANS simulation of abrupt self-ignition mode. Comparison with experiment
Conclusions

# LAERTE test facility (1/3)

x=0 870 mm combustion chamber duct 150 mm 370 mm 500 mm 150 mm solution 150 solution  $150 \text{ so$ 



• Coaxial fuel injection: adapted static pressures injection

 $\bullet$  Constant section during the first 370 mm of the duct, after diverges with a half-angle of 1.15°

| Operating conditions   | Air  | H <sub>2</sub> | 26% C <sub>2</sub> H <sub>4</sub> / 74% H <sub>2</sub> | 50% C <sub>2</sub> H <sub>4</sub> / 50% H <sub>2</sub>                     |
|------------------------|------|----------------|--------------------------------------------------------|----------------------------------------------------------------------------|
|                        |      |                | (molar fractions)                                      | (molar fractions)                                                          |
| Mach number            | 2    | 2              | 2                                                      | 2                                                                          |
| Static Pressure (MPa)  | 0.08 | 0.08           | 0.08                                                   | 0.08                                                                       |
| Total Temperature (K)  | 1850 | 300            | 300                                                    | 300                                                                        |
| Static Temperature (K) | 1200 | 160            | 160                                                    | 160                                                                        |
| Mass flow rate (g/s)   | 650  | 6.2            | $12.8(C_2H_4) + 2.6(H_2)$                              | <b>16.2</b> (C <sub>2</sub> H <sub>4</sub> )+ <b>1.2</b> (H <sub>2</sub> ) |
| velocity (m/s)         | 1336 | 1970           | 950                                                    | 730                                                                        |
|                        |      |                |                                                        | ONERA                                                                      |











### LAERTE test facility (3/3)

#### Wall pressure measurements

#### Pressure transducers

• 80 channels distributed on the top and on the bottom of the combustion chamber

#### • Locations:

- step of 10 mm on the first 150 mm of the duct
- *step of 15 mm between 150 mm < x < 370 mm*
- *step of 30 mm between 370 mm < x < 870 mm*

• Pressure rise characterizes the amount of heat release

• evaluation of auto-ignition by comparing reacting and nonreacting cases

ONERA

# Two types of autoignition

#### • weak ("smooth") mode:

• progressive and moderate heat release

• wall pressure profile with a low rise of pressure due to combustion

#### "abrupt " mode:

• sudden and brutal heat release

• wall pressure profile with a large rise of pressure due to combustion





### **Experimental data (2/2)**

# Abrupt mode of self-ignition. Pressure distribution



50%  $C_2H_4$  / 50%  $H_2$  mixture fuel jet mass rate: 16.2 ( $C_2H_4$ ) g/s + 1.2 ( $H_2$ ) g/s

Self-ignition length is about 35 cm

• Abrupt mode arises if content  $C_2H_4$  exceeds 29% (molar fraction)



1D calculation. Mach number distribution for 50%  $C_2H_4$  / 50%  $H_2$  mixture fuel jet

- thermal chocking takes place
- $\bullet$  subsonic region appears between 0.4  $m < x\hbox{-} x_o < 0.63~m$

## Synthesis of experimental results

#### • 2 scenarios based on observations Smooth mode

• *at the stagnation temperature 1850K and entrance Mach numberM=2, the self-ignition of pure hydrogen starts smoothly* 

• with the increase of the ethylene concentration in the ethylene/hydrogen mixture and for CH4/H2 mixture the delay length of self-ignition increases

Abrupt mode

•at some critical value of ethylene concentration self-ignition starts suddenly and strongly.

#### Importance of mixing time

• with increasing of an air/fuel premixing (i.e. after fuel injection), self-ignition can be brutal such as for premixed mixtures

• interaction between chemistry an mixing (turbulence) controls the self-ignition regime

ONERA



### **LES Combustion Model: PaSR – Vulis model**

**Multi-scale model** based on the assumption that reactions take place on the smallest *fine structures* (\*) embedded in the *surroundings* (<sup>0</sup>)

Subgrid balance equations

$$\begin{cases} \overline{\rho}(Y_i^* - \widetilde{Y}_i) = \tau_m \dot{w}_i(\overline{\rho}, Y_i^*, T^*) \\ \overline{\rho} \sum_{t=1}^N (Y_i^* h_i^* - \widetilde{Y}_i \widetilde{h}_i) = \tau_m \sum_{t=1}^N h_{i,f}^\theta \dot{w}_i(\overline{\rho}, Y_i^*, T^*) \\ \overline{\dot{w}}_i = \dot{w}_i(\overline{\rho}, Y_i^*, T^*) \end{cases}$$

$$\tau_m^{-1} = \sqrt{2\widetilde{S}_{ij}\widetilde{S}_{ij}} \qquad \widetilde{S}_{ik} = \frac{1}{2} \left( \frac{\partial \widetilde{u}_i}{\partial x_k} + \frac{\partial \widetilde{u}_k}{\partial x_i} - \frac{2}{3} \frac{\partial \widetilde{u}_l}{\partial x_l} \delta_{ik} \right)$$

 $\partial_{t}(\overline{\rho}\widetilde{Y}_{i}) + \nabla \cdot (\overline{\rho}\widetilde{\mathbf{v}}\widetilde{Y}_{i}) = \nabla \cdot ((D_{i} + \mu_{k} / Sc_{k})\nabla Y_{i}) + M_{i}P_{ij}\dot{w}_{j}(Y_{i}^{*}, T^{*})$ 

ONERA THE FRENCH AEROSPACE LAB



pure hydrogen reacting case (experiment 1998):

















### **One-dimensional analysis of the flow Thermal shocking investigation** (1/2)

• Advantage to be "easy", cheap & gives good information on crucial parameters of the flow. Takes into account the skin friction & heat losses of

$$\frac{dP}{P} = \frac{-\gamma M^2}{1 - M^2} \left(\frac{-dS}{S} + 2\xi \frac{dx}{D_h} + \frac{1}{C_p T} (dQ + h.dS(T_w - T))\right)$$
(1)

$$\frac{dT}{T} = \frac{1}{1 - M^2} ((\gamma - 1)M^2 \frac{dS}{S} + 2\xi(1 - \gamma)M^2 \frac{dx}{D_h} + \frac{1 - \gamma M^2}{C_p T} (dQ + h.dS(T_w - T))$$
(2)

$$\frac{dM}{M} = \frac{1}{1 - M^2} \left( (-1 + \frac{1 - \gamma}{2}) M^2 \frac{dS}{S} + \xi (1 + \gamma) M^2 \frac{dx}{D_h} + \frac{1 + \gamma M^2}{2C_p T} (dQ + h.dS(T_w - T)) \right)$$
(3)

where P is the static pressure, T the static temperature,  $T_w$  the wall temperature, M the Mach number,  $D_h$  the hydraulic diameter,  $\xi$  the skin friction coefficient, h the heat transfer coefficient, and Q the integral heat release from the injection point to the position x.

• Critical value for heat release in the test tube

$$\tilde{Q} = (1 - \frac{1}{M_{a0}^2})^2 \frac{M_{a0}^2}{2(1+\gamma)}$$

- $\tilde{Q}_{cr} = 0.50$
- pure hydrogen = 0.47
  - methane/hydrogen mixture = 0.43

• ethylene/hydrogen = 0.58













## Conclusions

- Self-ignition of H2, C2H4/H2 and CH4/H2 jets in a supersonic vitiated confined flow is studied. Two modes are found
  - weak mode thermal chocking is absent
  - abrupt mode with following thermal chocking
- Weak mode was simulated with LES
- Abrupt mode was simulated with URANS
  - abrupt mode is essentially non-steady
  - the flow oscillations are driven by interaction between thermal choking and upstream fuel-air mixing

- Additional study is needed to establish which mechanism between two :
  - acoustic, through local subsonic zone
  - pure gas dynamic, by impact of heat release fluctuations on the thermal chocking position
- is in the origin of flow oscillations