# GDR "Structure de la Turbulence et Mélange" Compte-Rendu de la session "hors thème" (5 avril 2005).

#### L. Chevillard (LEGI, Grenoble) et W. Bos (LMFA, Lyon)

Compilé par F. Moisy

Trois exposés ont été présentés durant cette session : ceux de N. Mazellier et de L. Chevillard, portant sur les statistiques des modes de Fourier de la vorticité, et celui de W. Bos, sur la dynamique non visqueuse du spectre d'énergie dans un domaine spectral tronqué.

## 1 Statistique des modes de Fourier de la vorticité : intermittence et corrélations à longue portée

N. Mazellier, L. Chevillard, C. Poulain, Y. Gagne et C. Baudet Laboratoire des Ecoulements Géophysiques et Industriels, Grenoble.

En turbulence pleinement développée, la plupart des travaux théoriques et expérimentaux [1] se focalisent sur les statistiques des incréments longitudinaux de vitesse Eulérienne dans l'espace physique,  $\delta_{\ell}u(x) = u(x + \ell) - u(x)$ . Ainsi, il est aujourd'hui largement admis que le signal de vitesse longitudinale est intermittent : les fonctions de structures se comportent comme une loi de puissance avec l'échelle  $\ell$ ,  $\langle (\delta_{\ell}u)^q \rangle \sim \ell^{\zeta_q^u}$ , avec  $\zeta_q^u$  une fonction non-linéaire de q. Dans l'espace de Fourier, de nombreux travaux théoriques [2] traitent des statististiques des modes de Fourier de la vitesse, mais peu d'études numériques ou expérimentales ont été réalisées afin de confirmer les prédictions émises notamment par Kraichnan. Le phénomène d'intermittence est encore aujourd'hui une question ouverte dans l'espace de Fourier [3]. D'un point de vue expérimental, les mesures directes de la transformée de Fourier de la vitesse (ou de la vorticité) sont rares.

La diffusion acoustique permet de mesurer directement la vorticité dans l'espace de Fourier. En analogie avec le phénomène bien connu de la diffusion de la lumière, le mécanisme physique responsable de la diffusion acoustique par la vorticité peut-être vu de la manière suivante [4, 5] : le champ de vitesse oscillant d'une onde acoustique advecte non-linéairement le champ de vorticité. Les fluctuations de vorticité ainsi induites jouent le rôle d'une source acoustique secondaire, responsable de l'émission d'une onde acoustique diffusée. L'équipe du L.E.G.I. à Grenoble a développé une technique expérimentale permettant de mesurer l'onde ainsi diffusée (voir [6] pour une description du dispositif expérimental).

L'écoulement étudié est un jet axisymétrique en régime de turbulence développée ( $R_{\lambda} \simeq 400$ , figure 1a). Le volume de mesure, défini comme l'intersection des faisceaux acoustiques incident et détecté (noté V<sub>scat</sub>, représenté en rouge), peut être déplacé long de l'axe du jet. Le signal résultant est la transformée de Fourier à court-terme (i.e. volume fini) du champ de vorticité  $\Omega(\vec{r}, t)$ :

$$\Omega_{\ell}(k,t) = \iiint_{\text{Scat}} \Omega(\vec{r},t) e^{-i\vec{k}.\vec{r}} d^3 r , \qquad (1)$$

où  $\ell \sim (V_{\text{scat}})^{1/3}$ . Le jet est un écoulement très particulier et a la propriété de garder un nombre de Reynolds  $\mathcal{R}_e = \sigma L/\nu$  constant le long de son axe. Ainsi, l'échelle de décorrélation L est inversement proportionnelle à l'écart-type de la vitesse  $\sigma$ .



Figure 1: (a) Expérience de diffusion acoustique dans un écoulement de jet turbulent. Le volume (fini) de mesure (en rouge) peut être déplacé le long de l'axe du jet. La photo du jet a été réalisée par Dimotakis. (b) Flatness du module de la vorticité dans l'espace de Fourier, pour quatre vecteurs d'onde de la zone inertielle du jet, en fonction de  $\ln(L/\ell)$ , où L est l'échelle de décorrélation de la vitesse le long de l'axe du jet, et  $\ell$  la dimension caractéristique du volume de mesure.

Le logarithme de la flatness des amplitudes de la vorticité,

$$F(L/\ell) = \frac{\langle |\Omega_{\ell}(k,t)|^4 \rangle}{\langle |\Omega_{\ell}(k,t)|^2 \rangle^2} , \qquad (2)$$

est representé en figure 1b en fonction de  $\ln(L/\ell)$  pour plusieurs vecteurs d'onde inertiels  $k_i$ , i = 1, 2, 3 et 4. L'échelle  $\ell$  est fixée par le volume de mesure, tandis que l'échelle de décorrélation de la vitesse L augmente linéairement le long de l'axe du jet. On remarque tout d'abord que la flatness est indépendante du vecteur d'onde  $k_i$ , en cohérence avec les travaux de Brun et Pumir [3]. Ainsi, contrairement au comportement de la flatness dans l'espace physique, cette dernière ne se comporte pas comme une loi de puissance vis à vis de l'échelle  $k_i^{-1}$ : le phénomène d'intermittence ne se situe pas, au premier ordre, dans l'espace des k. Ensuite, la flatness se comporte comme une loi de puissance vis à vis de l'échelle,  $F(L/\ell) \sim (L/\ell)^{\alpha}$ , avec  $\alpha \approx 0.24$ . On peut montrer que ce coefficient  $\alpha$  est relié au spectre  $\zeta_q^{\Omega}$  à trois dimensions de la vorticité :  $\alpha = 2\zeta_2^{\Omega} - \zeta_4^{\Omega}$ , et est une signature des corrélations à longue portée [7].

Une étude indépendante de l'intermittence de la vorticité considérée comme un champ de vecteurs, obtenue par simulation directe des équations de Navier-Stokes, a été effectuée par Kestener et Arneodo [8]. Ces auteurs concluent que le champ de vorticité est intermittent et le spectre d'exposants est tel que  $2\zeta_2^{\Omega} - \zeta_4^{\Omega} = 0.22 \pm 0.016$ , en cohérence complète avec les estimations présentées ici, bien que leur étude numérique ne démontre pas l'existence des corrélations à longue portée. Ces travaux du LEGI tendent donc à montrer, pour la première fois, que la vorticité est corrélée à longue portée et intermittente.

### 2 Dynamique non visqueuse du spectre d'énergie cinétique dans un domaine spectral tronqué

Wouter Bos et Jean-Pierre Bertoglio

Laboratoire de Mécanique des Fluides et Acoustique, Ecole Centrale Lyon.

Le comportement d'une turbulence isotrope pour un fluide incompressible non visqueux (équation d'Euler) est examiné dans un domaine spectral tronqué. Dans ce cas, une DNS effectuée par Cichowlas, Bonaiti, Debbasch et Brachet (2005)[9] et présentée lors de la précédente réunion du GDR (Paris, 25-26 novembre 2004), a mis en évidence des phénomènes intéressants : le spectre d'énergie cinétique, initialisé aux grandes échelles, développe une zone de cascade avec une pente proche de -5/3. Quand cette zone est étendue jusqu'à la troncature spectrale, une zone



Figure 2: (a) Spectre d'énergie. (b) Transfert non linéaire.

d'équipartition d'énergie, correspondant à un spectre en  $K^2$ , se développe. Entre la zone de cascade et la zone d'équipartition un minimum local du spectre existe.

W. Bos et J.-P. Bertoglio montrent que la fermeture EDQNM peut reproduire le comportement observé dans la DNS. Ensuite, un calcul sur une large plage spectrale est effectué (ce calcul correspondrait à une résolution de  $30.000^3$  en DNS). Les résultats sont illustrés en figure 2, où sont respectivement représentés le spectre d'énergie E(K) et le transfert non linéaire,  $T_{NL}(K)$ . Ce calcul permet de trancher entre deux estimateurs, proposés par Cichowlas *et al.*[9] pour le minimum du spectre. Le premier est obtenu en calculant l'intersection de la zone de cascade avec la zone d'équipartition. Le second prend en compte l'existence d'une zone de type 'dissipative' à la fin de la zone inertielle. Les résultats de la fermeture montrent que l'estimateur dissipatif est le plus approprié.

#### References

- U. Frisch, Turbulence, The Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge (1995).
- [2] A. M. Monin and A. S. Yaglom, Statistical Fluid Mechanics, MIT Press, Cambridge (1971).
- [3] C. Brun & A. Pumir, Phys. Rev. E 63, 056313 (2001)
- [4] G. K. Batchelor, in Symposium on Naval Hydrodynamics F. S. Sherman (ed.), National Academy of Sciences, Washington, 403 (1957).
- [5] F. Lund and C. Rojas, Physica D **37**, 508 (1989).
- [6] C. Poulain, N. Mazellier, P. Gervais, Y. Gagne & C. Baudet, Flow, Turb. and Comb. 72, 245 (2004).
- [7] M. E. Cates & J. M. Deutsch, Phys. Rev. A 35, 4907 (1987).
- [8] P. Kestener & A. Arneodo, Phys. Rev. Lett. 93, 044501 (2004).
- [9] C. Cichowlas, P. Bonaiti, F. Debbasch & M. Brachet, arXiv.org:nlin/0410064 (20050310)