Correlation between small scale velocity and scalar fields in a turbulent channel flow

> H Abe * R A Antonia** and H Kawamura***

* JAXA Japan
** University of Newcastle Australia
*** Tokyo University of Science Japan

Ability to mix scalar contaminants is one of the major characteristics of turbulence

The large scales play a major part in tansporting the scalar

...but the small scales are instrumental

for implementing the mixing at the molecular level

Why is it important to study how the small scale scalar mixing is affected by the strain and rotation imposed by the velocity field?

• In turbulent wall shear flows, the small scales are not only stretched by the mean shear, but also distorted by the organized motion (e.g. the near-wall vortical structures).

•Such scalar mixing occurs in a reactive flow with a wall, e.g.in a combustion chamber.

• For a turbulent channel flow DNS was first performed by Kim and Moin (1989) for $Re_{\tau} = 180$, Pr = 0.1, 0.71 and 2 with uniform internal heating. The focus was mainly on large scale transport.

• Antonia and Kim (1994) examined the isotropy of the small scales for Re_{τ} =180 ,392 and Pr=0.71

 However there was no attempt to investigate the spatial structures associated with these scales especially near the wall

Here we perform DNSs for Re_{τ} = 180, 395 and 640 at Pr = 0.71

The main objective is to study the structure of the vorticity and scalar dissipation fields

...in particular the manner in which these fields are correlated...in the context of the flow organization... The high correlation between u and θ in the near-wall region

(e.g. Iritani Kasagi and Hirata 1985, Antonia Krishnamoorthy Fulachier 1988, Kim and Moin 1989, Kasagi Tomita Kuroda 1992) and its association with low and high speed streaks ...

...implies a high correlation between ...

 $\partial u / \partial y$ and $\partial \theta / \partial y$ (i.e. between $-\omega_3$ and $\theta_{,2}$)

...as well as between $\partial u/\partial z$ and $\partial \theta/\partial z$

(i.e. between ω_2 and $\theta_{,3}$)

Visualization of momentum and thermal streaks 1. Experiment in a turbulent boundary layer by Iritani, Kasagi and Hirata (1992)

2. DNS in a turbulent channel flow for Re_{τ} =150 at Pr=0.71 by Kasagi and Ohtsubo (1993)

Thermal streaks (blue, T'+<-1.0; red, T'+>1.0) and velocity vectors in the x-z plane (1600*600 wall units).

Approach

The focus is on the relationship between the three components of the fluctuating vorticity vector $\boldsymbol{\omega}_i$ (i=1,2,3 represent the streamwise, wall-normal and spanwise directions, respectively) and those of the fluctuating scalar derivative vector $\theta_{i} (\equiv \partial \theta / \partial x_i)$

In particular, we compare mean-square values, correlation coefficients and instantaneous fields associated with those two vector fields.

 $\omega_i \omega_i$

Scalar enstrophy

 θ_{i}, θ_{i}

The summation rule is applied to the suffix i.

Outline

1. Numerical methodology 2. Validation checks for small scales 3. Statistics of vorticity and scalar dissipation fields a) Mean-square values b) Anisotropy invariant maps (AIMs) c) Budgets 4. Correlation coefficients between $\omega_i \omega_i$ and θ_{i}, θ_{i} a) Relationship to organized motions e.g. streaks, quasi-streamwise vortices, internal shear layers, backs or fronts, etc b) Relationship with the strain rates 5. Near-wall similarity between velocity and scalar fields 6. Transport and destruction of momentum and scalar fluxes as a result of near-wall organizations 7. Conclusions

Numerical methodology

Time Advancement 1) 3rd-order Runge-Kutta 2) 2nd-order Crank Nicolson Spatial discretization **Finite Difference Method** 1) 4th-order central difference (x, z dir.) 2) 2nd-order central difference (y dir.) **Boundary condition** 1) Periodic (x, z dir.) 2) Non-slip (y dir.) Averaging Spatially (x, z dir.) and temporally (t)

The instantaneous temperature is converted as

$$T^{+}(x^{\#}, y^{\#}, z^{\#}) = \frac{d\left\langle \overline{T}_{m}^{+} \right\rangle}{dx^{\#}} x^{\#} - \Theta^{+}(x^{\#}, y^{\#}, z^{\#}).$$

The "averaged" wall heat flux is constant since

$$\frac{d\left\langle \overline{T}_{m}^{+}\right\rangle }{dx^{\#}}x^{\#}=2/\left\langle \overline{U}_{1}^{+}\right\rangle .$$

 $\begin{pmatrix} \left\langle \overline{T}_{m}^{+} \right\rangle & \text{bulk mean temperature} \\ \left\langle \overline{U}_{1}^{+} \right\rangle & \text{velocity averaged over} \\ \text{the channel section} \end{pmatrix}$

The energy equation is expressed as

$$\frac{\partial \Theta^{+}}{\partial t^{\#}} + U_{j}^{+} \frac{\partial \Theta^{+}}{\partial x_{j}^{\#}} = \frac{1}{Re_{\tau} \cdot \Pr} \frac{\partial^{2} \Theta^{+}}{\partial x_{j}^{\#2}} + \frac{2U_{1}^{+}}{\left\langle \overline{U}_{1}^{+} \right\rangle}.$$

Superscripts + and # denote normalization by wall units and δ , respectively.

Domain size Grid points Spatial resolution Sampling time period

Re_{τ}	180	395	640
Pr	0.71	0.71	0.71
$L_x \times L_y \times L_z$	12.8δ x 2δ x 6.4δ	12.8δ x 2δ x 6.4δ	12.8δ x 2δ x 6.4δ
$L_x^+ \times L_y^+ \times L_z^+$	2304 x 360 x 1152	5056 x 790 x 2528	8192 x 1280 x 4096
$N_x \times N_y \times N_z$	768 x 128 x 384	1536 x 192 x 768	2048 x 256 x 1024
Δx^+ , Δy^+ , Δz^+	3.00, 0.20–5.90, 3.00	3.29, 0.15–6.52, 3.29	4.00, 0.15–8.02, 4.00
$\Delta x_{c}^{*}, \Delta y_{c}^{*}, \Delta z_{c}^{*}$	0.81, 1.61, 0.81	0.75, 1.48, 0.75	0.81, 1.62, 0.81
t+	3960	5008	2228

Kolmogorov microscale normalized by wall units

Budget of the turbulent kinetic energy *k*

 $= \frac{u_i u_i}{u_i}$

Budget of the temperature variance k_{θ}

 $\theta \theta$

Vorticity and scalar derivative anisotropy tensors

AIMs of the vorticity anisotropy tensor 0.41-component 0.3 2-component $G_{v} = (1/9) + 3III_{v} + II_{v} = 0$ -111_v axisymmetry $A_v = (III_v/2)/(-II_v/3)^{3/2} = +1$ $y^+=2.5$ 0.2 $v^{+} \equiv 0$ axisymmetry $A_{v} \equiv -1$ ^{,+}=60 0.1 $v^+=5$ $y^{+}=20$ Isotropy 0.05 0.1 III_{ν} Re₇=640 Re₇=395 Re₇=180

AIMs of the scalar derivative anisotropy tensor

Corrsin (1953)

• Temperature derivative

$$\Theta_{i} = \overline{\Theta}_{i} + \theta_{i} \qquad \left(\Theta_{i} \equiv \frac{\partial \Theta}{\partial x_{i}}\right)$$

• Vorticity

$$\Omega_i = \overline{\Omega}_i + \omega_i$$

 Θ_{i} is lamellar $(\nabla \times \Theta_{i} \equiv 0)$ Ω_{i} is solenoidal $(\nabla \cdot \Omega_{i} \equiv 0)$

Transport equation of $\omega_i \omega_i$

Transport equation of θ_{i}, θ_{i}

--- Kasagi et al. (1992) at Re_{τ} =150

The correlation tensor $\omega_i \theta$, has only four non-zero terms

the other five are zero due to symmetry
Correlation coefficients of $\omega_1 \theta_{i}$

Correlation coefficients of $\omega_2 \theta_{i}$

Contours of ω_2 and $\theta_{,3}$ in y-z plane at Re_{τ} = 180

 ω_2 (contour) with u_1 (lines) $\theta_{,3}$ (contour) with θ (lines)

Solid and dashed lines are positive and negative values.

Contours of ω_3 and $\theta_{,2}$ in y-z plane at Re_{τ} = 180

 ω_3 (contour) with u_1 (lines) $\theta_{,2}$ (

 $\theta_{,2}$ (contour) with θ (lines)

Solid and dashed lines are positive and negative values.

Contours of ω_1 in y-z plane at Re_{τ} = 180

Solid and dashed lines are positive and negative values.

Schematic of near-wall streamwise vortex with resulting high streamwise vorticity at the wall

Kim, Moin and Moser (1987)

Two types of ω_x 1) quasi-streamwise vortices 2) thin $\partial w / \partial y$ layers

Contours of instantaneous fields for ω_2 and $\theta_{,3}$ for Re₁=640 and Pr=0.71

 ω_2 (contour) with $\theta_{,3}$ (lines)

Contours of instantaneous fields for ω_3 and $\theta_{,2}$ for Re₁=640 and Pr=0.71

 ω_3 (contour) with $\theta_{,2}$ (lines)

Contours of instantaneous fields for u_1 and θ for Re_{τ} =640 and Pr=0.71

 u_1 (contour) with θ (lines)

The positive peak at $100\Delta z^+$ may correspond to the width of both low and high velocity streaks.

Fig. 12.1 Relationship between near-wall quasi-streamwise vortices and lowspeed streaks in the sublayer and buffer layer.

Robinson (1991, NASA TM 103859)

1) Widths of low u streaks: $20-80\Delta z^+$ 2) Widths of high u streaks: $40-110\Delta z^+$

Instantaneous enstrophy for Re_{τ} =640

Lines are the instantaneous u_1 . (solid lines: positive u_1 ; dashed lines: negative u_1)

Instantaneous scalar enstrophy for Re_{τ} =640 and Pr=0.71

Lines are the instantaneous θ . (solid lines: positive θ ; dashed lines: negative θ)

Instantaneous enstrophy for Re_{τ} =640

(solid lines: positive u_1 ; dashed lines: negative u_1)

Instantaneous scalar enstrophy for Re_{τ} =640 and Pr=0.71

The scalar enstrophy tends to exhibit sheet-like structures away from the wall.

possibly because the scalar gradient is aligned with the most compressive strain rate in this flow region. Eigenvalues and eigenvectors of the strain rate tensor S_{ii}

$$S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

Since S_{ij} is symmetric , its three eigenvalues, α, β, γ , are real and satisfy the following relations

1)
$$\alpha + \beta + \gamma = 0$$
 (Continuity)
2) $\alpha \ge \beta \ge \gamma, \ \alpha \ge 0 \ge \gamma$

Also, the eigenvectors, $\alpha_i, \beta_i, \gamma_i$, are expressed as follows:

$$P^{-1} \begin{pmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{pmatrix} P = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{pmatrix} \qquad \left(P = \alpha_i \text{ or } \beta_i \text{ or } \gamma_i \right)$$

Probability density functions for the cosine of the angle between the vorticity and the principal strain rate directions for Re_{τ} =180 and 640

Probability density functions for the cosine of the angle between the scalar gradient and the principal strain rate directions for Re_{τ} =180 and 640

Probability density functions for the cosine of the angle between the vorticity and the scalar gradient for Re_{τ} =180 and 640

 ω_i : vorticity; θ_{i} : scalar gradient

Summary of the alignment issue

Independent of y Preferred direction is β_i .

Mean gradients affect the alignment significantly.

In the near-wall region Preferred directions are α_i , γ_i .

Away from the wall Preferred direction is γ_i .

The near-wall similarity between u_1 and θ is quite high,

but not perfect even at the wall.

Contours of u_1 and θ at $y^+=0.2$

U₁

θ

Contours of u_1 and θ at $y^+= 8$

U₁

θ

Correlation coefficient between u_1 and θ

What causes the imperfect similarity between u_1 and θ ?

Why is the correlation between ω_2 and $\theta_{,3}$ greater than that between u_1 and θ ?

Governing equations

$$\frac{Du_1}{Dt} = -\frac{\partial p}{\partial x_1} + \nu \left(\frac{\partial^2 u_1}{\partial x_i^2}\right)$$
$$\frac{D\theta}{Dt} = a \left(\frac{\partial^2 \theta}{\partial x_i^2}\right)$$

At the wall

$$\frac{\partial^2 u_1}{\partial x_2^2} = (1/\nu) (\frac{\partial p}{\partial x_1})$$
$$\frac{\partial^2 \theta}{\partial x_2^2} = 0$$

Taylor series expansions u_1 and θ near the wall

$$u_1^{+} = b_1 x_2^{+} + c_1 x_2^{+2} + O\left(x_2^{+3}\right)$$
$$\theta^{+} = b_{\theta} x_2^{+} + O\left(x_2^{+3}\right)$$

$$c_1 x_2^{+2} = (1/2) (\partial^2 u_1 / \partial x_2^{+2}) x_2^{+2}$$
$$= (1/2\nu) (\partial p / \partial x_1) x_2^{+2}$$
Taylor series expansions u₃ near the wall

$$u_3^{+} = b_3 x_2^{+} + c_3 x_2^{+2} + O\left(x_2^{+3}\right)$$

 $c_3 x_2^{+2} = (1/2) (\partial^2 u_3 / \partial x_2^{+2}) x_2^{+2}$ $=(1/2\nu)(\partial p/\partial x_3)x_2^{+2}$

Taylor series expansions ω_2 near the wall

$$\omega_{2}^{+} = u_{1,3}^{+} - u_{3,1}^{+} = (b_{1,3} - b_{3,1}) x_{2}^{+} + O(x_{2}^{+3})$$

i.e. the x_2^{+2} term has disappeared

Contours of p_{1} and u_{1}

Contours of $p_{,3}$ and u_3

y+ = 0.2

 p_{1} (contour) with u_1 (lines)

 p_{3} (contour) with u_{3} (lines)

Contours of p (colour) and p_{.3}

Contours of p (colour)

with u_1 (lines)

with ω_1 (lines)

Contours of p (colour) ...but at a larger x⁺

u_1 (lines)

Near-wall Taylor series expansion of the correlation coefficients

$$\frac{\overline{\omega_{2}\theta_{,3}}}{\omega_{2}'\theta_{,3}'} = \frac{y^{+2}\left(\left(\overline{b_{1,3}}b_{\theta,3}} - \overline{b_{3,1}}b_{\theta,3}\right) + O\left(y^{+2}\right)\right)}{y^{+2}\sqrt{\left(b_{1,3}} - b_{3,1}\right)^{2}}\sqrt{\overline{b_{\theta,3}}^{2}}\left(1 + O\left(y^{+2}\right)\right)} = \frac{\left(\overline{b_{1,3}}b_{\theta,3}} - \overline{b_{3,1}}b_{\theta,3}\right)}{\sqrt{\left(b_{1,3}} - b_{3,1}\right)^{2}}\sqrt{\overline{b_{\theta,3}}^{2}}} + O\left(y^{+2}\right)$$

$$\frac{\overline{\omega_{3}\theta_{,2}}}{\omega_{3}'\theta_{,2}'} = \frac{-\left(\overline{b_{1}b_{\theta}} + 2\overline{c_{1}b_{\theta}}y^{+} + O(y^{+2})\right)}{\sqrt{\overline{b_{1}^{2}}}\sqrt{\overline{b_{\theta}^{2}}}\left(1 + 2\frac{\overline{b_{1}c_{1}}}{\overline{b_{1}^{2}}}y^{+} + O(y^{+2})\right)} \\
= \frac{-1}{\sqrt{\overline{b_{1}^{2}}}\sqrt{\overline{b_{\theta}^{2}}}}\left(\overline{b_{1}b_{\theta}} + 2\overline{c_{1}b_{\theta}}y^{+} + O(y^{+2})\right) \cdot \left(1 - 2\frac{\overline{b_{1}c_{1}}}{\overline{b_{1}^{2}}}y^{+} + O(y^{+2})\right) \\
= \frac{-1}{\sqrt{\overline{b_{1}^{2}}}\sqrt{\overline{b_{\theta}^{2}}}}\left(\overline{b_{1}b_{\theta}} + 2\left(\overline{c_{1}b_{\theta}} - \frac{\overline{b_{1}c_{1}}}{\overline{b_{1}^{2}}}\overline{b_{1}b_{\theta}}\right)y^{+}\right) + O(y^{+2})$$

Near-wall Taylor series expansion of the correlation coefficients

$$\frac{\overline{u_{1}\theta}}{u_{1}'\theta'} = \frac{y^{+2}\left(\overline{b_{1}b_{\theta}} + \overline{c_{1}b_{\theta}}y^{+} + O\left(y^{+2}\right)\right)}{y^{+2}\sqrt{\overline{b_{1}}^{2}}\sqrt{\overline{b_{\theta}}^{2}}\left(1 + \frac{\overline{b_{1}c_{1}}}{\overline{b_{1}}^{2}}y^{+} + O\left(y^{+2}\right)\right)} \\
= \frac{1}{\sqrt{\overline{b_{1}}^{2}}\sqrt{\overline{b_{\theta}}^{2}}}\left(\overline{b_{1}b_{\theta}} + \overline{c_{1}b_{\theta}}y^{+} + O\left(y^{+2}\right)\right) \cdot \left(1 - \frac{\overline{b_{1}c_{1}}}{\overline{b_{1}}^{2}}y^{+} + O\left(y^{+2}\right)\right) \\
= \frac{1}{\sqrt{\overline{b_{1}}^{2}}\sqrt{\overline{b_{\theta}}^{2}}}\left(\overline{b_{1}b_{\theta}} + \left(\overline{c_{1}b_{\theta}} - \frac{\overline{b_{1}c_{1}}}{\overline{b_{1}}^{2}}\overline{b_{1}b_{\theta}}\right)y^{+}\right) + O\left(y^{+2}\right)$$

 Re_{τ} =180, Pr=0.71

Joint pdf of u_1 and θ at $y^+ = 8$

Spanwise co-spectra of ω_2 and $\theta_{,3}$ compared with spanwise spectra of ω_2 and $\theta_{,3}$

Spanwise spectral coherence of ω_2 and $\theta_{,3}$

Spanwise co-spectra of ω_3 and $\theta_{,2}$ compared with spanwise spectra of ω_3 and $\theta_{,2}$

$$\begin{array}{c}
1 \\
- k_z Co_{\omega_3\theta}, 2(k_z) / \overline{\omega_3\theta}, 2 \\
- k_z \phi_{\omega_3\omega_3}(k_z) / \overline{\omega_3\omega_3} \\
- k_z \phi_{\theta}, 2\theta, 2(k_z) / \overline{\theta}, 2\theta, 2 \\
0.6 \\
- k_z \phi_{\theta\theta}(k_z) / \overline{\theta\theta} / \\
0.4 \\
0.4 \\
0.2 \\
0 \\
10^{-3} \\ 10^{-2} \\ 10^{-1} \\ k_z^{+} \\ 10^{0}
\end{array}$$

$$Re_{\tau} = 180, Pr = 0.71 \\
y^{+} = 15 \\
- y^{+} = 15 \\$$

Spanwise spectral coherence of ω_3 and $\theta_{,2}$

The transport and destruction of momentum and scalar fluxes as a result of the nearwall organization.

Contours of instantaneous turbulent heat-fluxes for Re_{τ} =180 and Pr=0.71

Color contours are the instantaneous $u_i \theta$ or uv, while lines are the instantaneous θ . Solid and dashed lines are positive and negative values.

Contours of instantaneous enstrophy and scalar enstrophy for Re_{τ} =180 and Pr=0.71

Colour contours are the instantaneous $\omega_i \omega_i$ or $\theta_{i} \theta_{i}$, while lines are the instantaneous θ . Solid and dashed lines are positive and negative values.

$$\mathcal{E}/\mathcal{V} \equiv \mathcal{U}_{i,j}\mathcal{U}_{j,i} + \mathcal{O}_i\mathcal{O}_i$$

- ${\cal E}$: Dissipation
- $\mathcal{U}_{i,j}$: Deformation tensor
- $\mathcal{U}_{i,j}\mathcal{U}_{j,i}$: Second invariant of the tensor
 - $\omega_i \omega_i$: Enstrophy

Instantaneous \mathcal{E} , $u_{i,j}u_{j,i}$, $\omega_i\omega_i$ for Re_{τ}=180

Lines are the instantaneous ε .

 $\nabla^2 p \equiv -u_{i,j} u_{j,i}$ $\nabla^2 : \left(\frac{\partial^2}{\partial x_i^2} \right)$ *p* : pressure fluctuation $\mathcal{U}_{i,i}$: Deformation tensor $\mathcal{U}_{i,j}\mathcal{U}_{j,i}$: Second invariant of the tensor

Instantaneous $\nabla^2 p$, $u_{i,j}u_{j,i}$ for Re_{τ} =180

Color contours are the instantaneous $\nabla^2 p$, while lines are the instantaneous $u_{i,j}u_{j,i}$. Solid and dashed lines are positive and negative values.

Instantaneous \mathcal{E} , $u_{i,j}u_{j,i}$, $\omega_i\omega_i$ for Re_{τ}=180

 $\mathcal{U}_{i,j}\mathcal{U}_{j,i}$

 $\omega_i \omega_i$

Lines are the instantaneous ε .

Conclusions

Near the wall, θ_{i} is closely associated with ω_{i} ,

reflecting the near-wall organization (quasi-streamwise vortices, streaks and internal shear layers)

the largest correlation is between ω_2 and $\theta_{,3}$ reflecting the reduced role of pressure on ω_2

but the correlation between ω_3 and $\theta_{,2}$, which is identical to that between u_1 and θ , is also high

Away from the wall, θ_{i} is less well correlated with ω_{i} , reflecting the presence of less well correlated large-scale motions of u_{1} and θ

But there is concentrated enstrophy in the outer region

often in the form of sheet-like structures

at the so-called 'fronts' or 'backs'...

Work in progress...

• effect of Pr (or Sc)

• different boundary conditions e.g. wall roughness

