Turbulence measurements under extreme conditions : cryogenic fluids

- Scope : give some flavour of why and how to perform turbulence measurements in low temperature fluids
 - Fluid : Helium liquid, gaseous and superfluid
 - Cryogenic : T_{flow} as low as a few K
 - Flows : open flows
 - o Axisymetric Jet flow (GReC experiment) @ CERN in Genevao Grid flow (TSF experiments) @ CEA in Grenoble

Turbulence measurements under extreme conditions : Why cryogenic fluids?

• Most exact (at least reliable) results and models on turbulence are *asymptotic* laws : in the "limit of large Re numbers", with slow convergency (sometimes logarithmic).

• Main motivation : achievement of very high Reynolds numbers in well controled conditions (stationarity, reproducibility)

- Routes to Large Re flows : $Re = \frac{UL}{V}$
 - ✓ High U : limited by sound velocity
 - ✓ Large L : e.g. geophysical flows, large wind tunnels (Modane)

o Total power consumption : $\mathcal{E}L^3 \propto U^3 L^2$ (@Modane : $20m^2 \times 500 \text{ MW}$!)

o Large installations are hard to control ⇔stationarity ?

Ualium viscosity	Fluid	
$273 \text{ K} \rightarrow 1.0 \text{ cm}^2/\text{s}$	Air Water	
$2 \text{ K} \rightarrow 1.0 \ 10^{-4} \text{ cm}2/\text{s}$	Helium I Helium II Helium and	
4 orders of magnitude	Helium gas	

✓ Small v : Helium the "Third Flu	uid"			
Helium viscosity	Fluid	T (K)	P (Bar)	$\nu \text{ (cm}^2/\text{s})$
	Air	293	1	0.15
$2/3 \text{ K} \rightarrow 1.0 \text{ cm}^2/\text{s}$	Water	293	1	0.01
$\mathbf{O} \mathbf{V} \rightarrow 1 \mathbf{O} 1 \mathbf{O} \mathbf{I}$	Helium I	2.2	SVP	1.8×10^{-4}
$2 \text{ K} \rightarrow 1.0 \ 10^{-4} \text{ cm}2/\text{s}$	Helium II	1.8	SVP	8.9×10^{-5}
4 orders of magnitude	Helium gas	5.5	2.8	3.2×10^{-4}

Turbulence measurements under extreme conditions : Additional properties of He

• Mechanical properties : wide range of $v_{He} \Rightarrow$ wide range of Re at constant geometry (U,L)

- ✓ first cryogenic He jet flow @ CRTBT in Grenoble in the 1990's (Pr B. Castaing)
 ✓ large cryogenic He jet flow (GReC project) @ CERN in Geneva in the 2000's
- Thermal properties of Helium : wide range of Ra (@CRTBT : B. Castaing and P. Roche)
- But He is also interesting for compressible turbulence (playing with the pressure)

friction

✓ Superfluid grid turbulence @ CEA in Grenoble : under development

The GReC experiment 1. People

- CERN : P. Lebrun, O.Pirotte, J-P.Dauvergne, A.Bezaguet, R.Van Weelderen
- CRTBT : B. Chabaud, S. Pietropinto (PhD), B. Hebral, Y. Ladam (Post-Doc), J-L. Bret (Elect Eng-CNRS)
- ENS-Lyon : B. Castaing, O. Michel
- LEGI : C. Poulain (PhD), J-P. Barbier-Neyret (Elec Eng-CNRS), Y. Gagne, C. Baudet

The GReC experiment 2. History

- 1990's : Cryogenic Helium Jet experiments at CRTBT (B. Castaing & B. Chabaud) in Grenoble.
- 1998-1999 : contacts with the CERN and design of the GReC experiment.
- 1999 : manufacturing of the nozzle, fluid connections, supports for the sensors, sensors (hot-wires, flow-meter, acoustic vortex sensor).
- 2000 : installation of the sensors, tests of the stability of the flow (set-up of the control loop by CERN), tests of the sensors
- 2001-2002 : data acquisitions ~ 3 x ~15-days campaigns
- Since 2002 : Data analysis, de-noising, turbulence statistics ...

The GReC experiment 3. Funding

• CERN

- Man Power (flow control, refrigerator operation and maintenance)
- Cryogenic facility Linde Refrigerator and Cryostat
- Electrical Power and Helium
- Région Rhône-Alpes
 - Electronics, manufacturing, travels
 - one-year Post-Doctoral grant (Y. Ladam)

The GReC experiment 4. Flow Geometry

Why an Axisymetric Jet Flow?

- High turbulence level $(u_{rms}/u_{avg} \sim 25\%) \Rightarrow$ Large Re
- Mean Flow velocity : Hot-Wire anemometry, Taylor hypothesis
- Fully documented properties : e.g. large scale flow profiles, ...
- Known anisotropy, axial evolution (longitudinal inhomogeneity)
- Self-similarity of the large scale flow ("looking-glass" property)
 ✓ (L_{int}, λ_{Tayl}, η_{Kolm}) α (z-z_o)
 ✓ (u_{avg}, u_{rms}) α (z-z_o)⁻¹
 ✓ (Re, R_λ) = Ctes whatever the downstream distance z/D_{nozzle}
- Dimensions constrained by the size of the CERN Cryostat

The GReC experiment 5. Experimental Set-Up Flow Set-Up

Helium Production

- Linde refrigerator : Refrigeration Power 6 kW
 overall Electrical Power consumption : several MW !
- Gaseous Helium Flow Rate @ 4 K : 20g/s -> 300g/s from heating of Liquid Helium @ 2,7 K
- T and Q regulation : heating control in the coaxial transfer line
- Loop back on (P, T, Q) measured in the jet flow

The GReC experimental set-up

The GReC experiment 7. Stability

Fluid Temperature

Pressure Drop

He Flow rate

Large Scale Fluctuations : ~ a few % Stability over Long Times : ~ 1 day

The GReC experiment 8. Instrumentation

- "Hot-Wire" superconducting anemometer Eulerian Velocity measurements
- Acoustic Scattering sensors Spectral Vorticity measurements
- Pitot tube
 - Mean and rms velocity measurements
- Thermocouples
 - Temperature monitoring
- All sensors mounted on a moving ring to probe various downstream distances

The GReC experiment 9. Superconducting Hot-Wire

Fluid

T_{Fluid}

- Local Velocity fluctuations measured through Heating Current fluctuations (up to 1 Mhz).
- V(i) Non-Linear (Kings Law) ⇒need for Calibration for each Flow Rate
- Aging sensors

The GReC experiment 10. Spectral Vorticity measurements

- Direct : one vorticity component
- Spectral : spatial Fourier modes
- Non intrusive : remote sensing
- Small Scale statistics: velocity gradients
- Non Local : V_{Scatt}

$$\tilde{\Omega}_{\perp}(\vec{q}_{scatt},t) = \iiint_{V_{scatt}} \Omega_{\perp}(\vec{r},t) \cdot e^{i\vec{q}_{scatt}\vec{r}} d^3r$$

$$q_{scatt} = 4\pi \frac{v_o}{c} \sin\left(\frac{\theta_{scatt}}{2}\right)$$

The GReC experiment 11. Signal acquisition

- Multiple HP E1430 digitizers (bus VXI)
- Large Band-Width : up to 4 MHz
- High Precision : up to 23 (18 bits alias-free \Rightarrow 110 dB)
- Large sample records $(2\ 10^9)$: up to 1000 s continuously

0.34

4.04

4.04

0.36

4.06

4.06

0.38

4.08

4.08

0.4

4.1

4.1

The GReC experiment 12. Signal Conditioning and Calibration

- Gaussian Statistics of the Large Scale Velocity (turb level : ~ 25%)
- GReC Jet is a "Well Behaved" Axisymetric Turbulent Jet

The GReC experiment 13. Flow Reynolds Numbers and Scales

Helium Viscosity @ $T_{op} \sim 4.7 \text{ K} : v_{He} = 8.10^{-8} \ (\sim v_{air}/230 \ !)$ Mass Flow Rates : Q = 21 g/s up to 250 g/s

Mean Velocity (@50 D_{Nozzle}) : from 35 cm/s up to 4 m/s

Reynolds numbers : $Re = 8.10^5$ up to 10^9 Taylor Reynolds numbers : $R_{\lambda} = 1300$ up to 6000

Integral Scale : $L \sim 30$ cm Taylor Scales : $\lambda = 1.7$ mm down to 0.4 mm Kolmogorov Scales : $\eta = 20 \ \mu m$ down to 0.4 μm

Time series up to 10^9 samples @ $F_{sampling} = 1.25$ MHz

The GReC experiment 14. Scaling Laws inertial range

The -5/3 law (Kolmogorov 1941)

-5/3 and 4/5 laws (K41)

The GReC experiment 15. Higher Order Statistics : intermittency

Compensated (K41) Structure Functions @ $R_{\lambda} \sim 6000$

The GReC experiment 16. Noise Contamination

Denoising using EMD (Empirical Mode Decomposition)

Scale resolved Noise Diagnostic (Evolution of the Flatness GReC 82g/s)

- Noise : non linear and non stationary process
- Possible origin : current saturation in the supraconductor ($i > i_{crit}$)
- Still : capture of Inertial Range Intermittency (slope ~-0.1)

The GReC experiment 17. Conclusions

- GReC I experiment was intended to be preliminary (interrupted since 2002, but ready to start again)
- Preliminary Outcomes :
 - Feasibility of a well controled high Re turbulent jet @ CERN
 - Evidences of Inertial Range Intermittency
 - Identification of some instrumentation problems
- Works in progress
 - Super-fluid wind tunnel @ CEA in Grenoble CryoLoop
 - Atlas Pipe-Flow experiment @ CERN (Ph. Roche)
 - Developments of new small scale instrumentation in progress in Grenoble Hot-Wire, Second Sound (vortex counting), Acoustic Scattering (vorticity fluctuations), ...
- Prospective works
 - Atlas, GReC II, Large Convective Cell ...

The TSF experiment 1. Aims

- TSF : "Turbulence Superfluide français"
- Fully developped Grid turbulence
 - ✓ Liquid Helium in the normal state ⇒Classical turbulence at $R_{\lambda} \sim 450$ o Grid turbulence ~ best approximation of Homogeneous Isotropic turbulence o Low velocity fluctuations level : $u'/U \approx 3\%$
 - o High R_{λ} scales separation
 - o Scaling laws (structure functions), intermittency, ...
 - ✓Liquid Helium in the superfluid state ⇒Quantum turbulence
 - o shape of the energy spectrum in the dissipative range?
 - o do the dissipative process influence (modify) intermittency?
 - o internal vs inertial intermittency?
 - o mutual interaction of the normal and superfluid turbulent velocities ?
 - o dynamic of superfluid vorticity lines (second sound probe, P. Roche).

The TSF experiment 2. People

• CEA (Commissariat à l'énergie atomique) :

B. Dubrulle and F. Daviaud : CEA/Saclay

P. Diribarne, P. Thibault, Bernard Rousset and Alain Girard : CEA/Grenoble (SBT)

• Institut Néel (CNRS) :

P. Roche

• Ecole Normale Supérieure de Lyon :

L. Chevillard (CNRS) and Pr <u>B. Castaing</u> (head of the project)

- Laboratoire des Ecoulement Géophysiques et Industriels (UJF-INPG-CNRS) Y. Gagne and C. Baudet
- Funding : Agence Nationale de la Recherche, Projet TSF

The TSF experiment 4. Sensors

 Eulerian Velocity measurement with supra-conductor hot-wire only for the normal fluid (need a viscous boundary layer !) and Pitot tube
 P. Diribarne & P. Thibault

 Second sound Vorticity probe Thermal propagative waves only for the super-fluid P. Roche

 Acoustic scattering probe Spectral vorticity measurements in both normal and super fluids Y. Gagne & C. Baudet

2µm

The TSF experiment 5. Stability tests

Typical temperature stabilities for normal helium operation (Mass flow rate 380g/s)

• $Q_{\text{He}} \sim 400 \text{ g/s}$

• Superfluid phase

