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1.1 Transport Equations for Passive Scalars

Momentum balance:

∂Ui

∂t
+ Uj

∂Ui

∂xj
= ν

∂2Ui

∂xj∂xj
− 1

ρ

∂p

∂xi
, (1.1)

Chemical species mass balance:

∂φα

∂t
+ Uj

∂φα

∂xj
= Γα

∂2φα

∂xj∂xj
+ Sα(φ). (1.2)

Solution for velocity depends on Reynolds number (Re)

Solution for inert scalars depends on Re and Schmidt number (Sc = ν/Γ)

Solution for reacting scalars also depends on Damköhler numbers (Da)
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Modeling challenge: Direct-numerical simulations (DNS) are intractable for

turbulent flows of interest, how can we use transport equations?

Turbulence Models

Reynolds-averaged transport equations are unclosed:

Mean momentum balance:

∂〈Ui〉
∂t

+
∂〈UjUi〉

∂xj
= ν

∂2〈Ui〉
∂xj∂xj

− 1

ρ

∂〈p〉
∂xi

(1.3)

Mean chemical species mass balance:

∂〈φα〉
∂t

+
∂〈Ujφα〉

∂xj
= Γα

∂2〈φα〉
∂xj∂xj

+ 〈Sα(φ)〉 (1.4)
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• Reynolds stresses: 〈ujui〉

• Scalar fluxes: 〈ujφα〉

• Mean chemical source term: 〈Sα(φ)〉

CFD models for the Reynolds stresses and scalar fluxes are available and reasonably

reliable (can be validated with PIV and PLIF)

Due to coupling with chemical time scales and nonlinear form, 〈Sα(φ)〉 is much more

difficult to model!

Similar remarks hold for large-eddy simulations (LES) because micromixing

and chemical reactions occur at small scales!
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Chemical-Source Term

Chemical source term depends on local concentrations and temperature (not on gradi-

ents):

S(φ) where φT = (cA, cB, . . . , T)

If we know the one-point, one-time composition probability density function (PDF)

fφ(ψ; x, t), we can compute 〈Sα(φ)〉!

For one scalar, fφ(ψ; x, t) can be approximated by a histogram of the subgrid-scale

distribution of φ:
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Sketch of histogram based on 24 samples and 7 bins in φ-space:

Taking a sufficiently large sample and small bins, the histogram converges to the PDF:

lim
N,M→∞

h(m∆) → f̂φ(ψ). (1.5)
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The same idea extends to two scalars φA and φB:

The bivariate PDF is represented by a contour plot
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In summary, the statistical approach to turbulent mixing is based on finding

appropriate models for the joint PDF (which can be directly measured experi-

mentally)

Molecular Mixing

The one-point PDF approach introduces conditional quantities that must be modeled:

• Conditional diffusion: 〈Γ∇2φ|ψ〉

• Conditional dissipation: 〈εφ|ψ〉 = 2〈Γ |∇φ|2 |ψ〉
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The effect of molecular diffusion (micromixing) is to change the shape of the PDF:

Without diffusion (Γ = 0), fφ(ψ) will always be the same!
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The effect of diffusion is contained explicitly in the conditional Laplacian:

〈Γ∇2φ|ψ〉 can be found from DNS
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For example, the concentration in a Lagrangian fluid element is governed by

dφ∗
α

dt
= 〈Γα∇2φα|φ = φ∗〉+ Sα(φ∗) (1.6)

A simple model for the conditional Laplacian is

〈Γα∇2φα|φ = φ∗〉 =
1

τφ
(〈φα〉 − φ∗

α) (1.7)

which is the interaction-by-exchange-with-the-mean (IEM) micromixing model
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In other mixing models, the conditional scalar dissipation rate is needed:

〈εφ|ψ〉 can be extracted from experiments or DNS to validate micromixing models

In summary, models for micromixing should be based on the underlying physics

so that they can be validated experimentally or by using DNS
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1.2 Turbulent Mixing

Basic question: If we introduce a “blob” of scalar with length scale lφ into a fully-

developed turbulent flow with Reynolds number ReL and integral length scale Lu,

how long will it take (on average) for φ to be completely mixed?

Length Scales of Turbulent Mixing

Integral scale:

Like velocity, a turbulent scalar field will have an integral length scale Lφ

In a transient mixing experiment, Lφ(t) depends on time: Lφ(0) = lφ



1.2. TURBULENT MIXING 15

However, due to turbulence advection, Lφ(t) will approach Lu on a time scale propor-

tional to τu = k/ε

Batchelor scale:

For Sc = ν/Γ > 1, the Batchelor scale is defined by

λB ≡ Sc−1/2η (1.8)

λB is the characteristic length scale of the smallest diffusion layers in the scalar field
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Sc = 1 Sc � 1

Scalar “eddies” of size λB can be assumed to be completely micromixed
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Phenomenological Model for Turbulent Mixing

For lφ � λB, molecular diffusion is not effective and thus

Dφ

Dt
=

∂φ

∂t
+ Ui

∂φ

∂xi
= 0 (1.9)

with initial conditions

φ(x, 0) =











0 for x ∈ D

1 for x ∈ Dc
(1.10)
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Then for t > 0, the turbulence will reduce lφ:

Until t � 0 where molecular diffusion starts to micromix the fluid:
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Question: From turbulence theory, what is the rate γ(lφ) at which lφ decreases in size?

From spectral theory, convection rate through inertial range scales like (κη)2/3

We can use this rate for lφ ≥ η:

γ(lφ) =
( ε

ν

)1/2
(

η

lφ

)2/3

for η ≤ lφ ≤ Lu (1.11)

For lφ = Lu, this yields

γ(Lu) =
ε

k
(1.12)

and for lφ = η

γ(η) =
( ε

ν

)1/2

= Re1/2
L γ(Lu) (1.13)

Thus, mixing rate increases greatly as scalar size decreases
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Initial length scale fixes the rate-determining (slowest) step!

For lφ < η, vortex stretching reduces eddy size at a constant rate:

thus

γ(lφ) =
( ε

ν

)1/2

for lφ ≤ η (1.14)



1.2. TURBULENT MIXING 21

Simple phenomenological model for mixing:

dlφ

dt
= −γ(lφ)lφ (1.15)

with lφ(0) = Lφ > η

The total mixing time can be approximated by lφ(tmix) = η:

tmix ≈
3

2

(

Lφ

Lu

)2/3

τu +
1

2
ln(Sc)τη (1.16)

Remarks:

(a) Unless Sc � 1, the second term will be negligible for large Re

(b) The ratio Lφ:Lu (scalar-to-velocity integral-scale ratio) is a key parameter in scalar

mixing
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(c) If the scalar eddies are initially generated by turbulent velocity fluctuations acting

on a mean scalar gradient, then Lφ ≈ Lu and tmix ≈ τu is determined entirely by

the turbulent flow

(d) Model assumes fully developed high-Reynolds-number turbulence: A more ac-

curate estimate can be found from the scalar spectrum as functions of ReL = k2/νε

and Sc

Scalar mixing time is more complicated to model than turbulence time scales

(Lφ:Lu 6= 1, large Sc, low Re, etc.)
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1.3 Statistical Description of Turbulent Mixing

Emphasis will be on how to describe scalar statistics and on how length and

time scales change with Reynolds and Schmidt numbers

One-Point Velocity, Composition PDF

General theory starts with joint PDF:

fU,φ(V, ψ; x, t) dV dψ ≡ P[{V ≤ U(x, t) < V +dV}∩ {ψ ≤ φ(x, t) < ψ +dψ}] (1.17)

Composition PDF is defined by

fφ(ψ; x, t) dψ ≡ P[ψ ≤ φ(x, t) < ψ + dψ] (1.18)
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and be found by integrating out the velocity:

fφ(ψ; x, t) =

+∞
∫∫∫

−∞

fU,φ(V, ψ; x, t) dV (1.19)

Velocity and scalar statistics can be studied using direct-numerical simulation

(DNS)
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U(x, t∗) and φ(x, t∗) as functions of x = x1 with fixed t = t∗:

Dashed line: Sc = 1/8 Solid Line: Sc = 1

Low Sc line is “smoother” ⇒ Batchelor scale is larger
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U(x∗, t) and φ(x∗, t) as functions of t with fixed x = x∗:

Dashed line: Sc = 1/8 Solid Line: Sc = 1

Low Sc line is “smoother” ⇒ Eulerian time scale is larger
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Lagrangian velocity U+(t) and scalars φ+(t) as functions of t:

Dashed line: Sc = 1/8 Solid Line: Sc = 1

Low Sc line is “smoother” ⇒ Lagrangian time scale is larger
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Nonpremixed composition PDF fφ(ψ; t) starts from

fφ(ψ; 0) = p0δ(ψ) + p1δ(ψ − 1) (1.20)

with mean value:

〈φ(x, 0)〉 =
∫ +∞

−∞

ψ fφ(ψ; 0) dψ = p1 (1.21)

Due to molecular mixing, the variance decreases with time:
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where the variance is defined by

〈φ′2(x, t)〉 ≡
∫ +∞

−∞

(ψ − 〈φ〉)2 fφ(ψ; t) dψ (1.22)
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At t = ∞, PDF is a delta function:

fφ(ψ; ∞) = δ(ψ − p1) (1.23)

The micromixing model determines both the rate of variance decay and the shape of

the PDF at each instant

We will see later how to write a transport equation for the PDF

Conditional Velocity and Scalar Statistics

Conditional statistics are used often in PDF methods (e.g., the micromixing model)
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Example: scalar-conditioned velocity fluctuations (scalar dispersion)

〈u|ψ〉 ≡ 〈U|φ = ψ〉 − 〈U〉 (1.24)

Computed using the conditional PDF of velocity given scalar:

fU|φ(V|ψ; x, t) ≡ fU,φ(V, ψ; x, t)

fφ(ψ; x, t)
(1.25)

〈U(x, t)|ψ〉 ≡
+∞
∫∫∫

−∞

V fU|φ(V|ψ; x, t) dV (1.26)

Example: Conditional scalar dissipation rate (CSDR) of mixture fraction

〈εξ|ζ〉 ≡
〈

2Γ
∂ξ

∂xi

∂ξ

∂xi

∣

∣

∣

∣

ξ = ζ

〉
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This function is needed to close the mixing term in PDF models

Scalar dissipation is a random field:

εξ(x, t) ≡ 2Γ
∂ξ

∂xi

∂ξ

∂xi
(1.27)

so one-point joint PDF is defined by

fεξ,ξ(z, ζ; x, t) dz dζ ≡ P[{z ≤ εξ(x, t) < z + dz} ∩ {ζ ≤ ξ(x, t) < ζ + dζ}] (1.28)

CSDR defined by

〈εξ|ζ〉 ≡
∫ +∞

−∞

z fεξ|ξ(z|ζ; x, t) dz =
∫ +∞

−∞

z
fεξ,ξ(z, ζ; x, t)

fξ(ζ; x, t)
dz (1.29)

This is needed in conditional moment closure (CMC) to model micromixing
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Scalar Energy Spectrum (2-point statistic)

Scalar variance:

〈φ′2〉(t) =
∫

∞

0
Eφ(κ, t) dκ (1.30)

Scalar dissipation rate:

εφ(t) =
∫

∞

0
2Γκ2Eφ(κ, t) dκ =

∫

∞

0
Dφ(κ, t) dκ (1.31)

Scalar mixing time:

τφ(t) ≡ 2〈φ′2〉
εφ

(1.32)

Need expression for τφ as part of micromixing model
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Model for Fully-Developed Scalar Spectrum

Model scalar spectrum for Eφ(κ) (time independent) can be used to determine effects of

ReL and Sc on equilibrium scalar mixing ⇒ equilibrium model for τφ

However, must account for differences when Sc � 1 and Sc � 1

For Sc � 1, two scalar dissipation wavenumbers can be defined:

κc1 ≡ Sc3/4κDI (1.33)

κc2 ≡ Sc3/4κη (1.34)

where κDI and κη are from turbulence energy spectrum (see Pope (2000) Turbulent

Flows)
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Model turbulence energy spectrum: (Pope 2000)

Extend this “correlation” to the scalar spectrum to account for Sc
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Model scalar energy spectrum: (Fox 2003)

Eφ(κ) = COCεφε−3/4ν5/4(κη)−β(κη) fL(κLu) fB(κη) (1.35)

with exponent

β(κη) ≡ 1 +
2

3
[7 − 6 fD(κη)] fη(κη) (1.36)

where the cut-off functions fL, fη, fD and fB determine the sub-ranges

Diffusion-scale exponent cut off:

fD(κη) ≡
(

1 + cDSc−d(κη)/2κη
)

exp
(

−cDSc−d(κη)/2κη
)

(1.37)

with cD = 2.59 (fit to DNS) and

d(κη) ≡ 1

2
+

1

4
fη(κη) (1.38)
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Batchelor-scale cut off:

fB(κη) ≡
(

1 + cdSc−d(κη)κη
)

exp
(

−cdSc−d(κη)κη
)

(1.39)

Scalar-dissipation constant cd is found by forcing

εφ =
∫

∞

0
2Γκ2Eφ(κ) dκ (1.40)

or
∫

∞

0
(κη)2−β(κη) fL(κLu) fB(κη) d(κη) =

Sc

2COC
(1.41)

For Sc > 1, cd ≈ 2 for all values of ReL
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Model spectra for Rλ = 500 and Sc = 10−4 to Sc = 104 in powers of 102:
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Model spectra for Sc = 1000:
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1.4 Equilibrium Models for Scalar Mixing

Scalar-Variance Transport Equation

In order to account for micromixing in inhomogeneous flows, we need to compute the

scalar variance

The RANS scalar-variance transport equation is

∂〈φ′2〉
∂t

+ 〈Ui〉
∂〈φ′2〉

∂xi
+

∂〈uiφ′2〉
∂xi

= Γ∇2〈φ′2〉+ Pφ − εφ (1.42)

where the production term is closed (assuming scalar flux is known)
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The scalar-variance flux can be modeled by

〈uiφ
′2〉 = −ΓT

∂〈φ′2〉
∂xi

(1.43)

or (in the RSM context) by

〈uiφ
′2〉 = − k

ScTε
〈uiuj〉

∂〈φ′2〉
∂xj

(1.44)

The SDR rate is usually modeled by the “equilibrium” model:

εφ = Cφ
ε

k
〈φ′2〉 (1.45)

with Cφ ≈ 2 (independent of Re and Sc)
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Extended-Equilibrium Model for Scalar Dissipation

Many “practical” flows are not at high Reynolds

Following Corrsin (1964), we can use the model spectrum to compute Re and Sc de-

pendence:

εφ = Cφ(Re, Sc)
ε

k
〈φ′2〉 (1.46)

Local k and ε (and hence Re) found from turbulence model

Accounts for local low-Reynolds-number effects that are common in many

applications
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Mechanical-to-scalar time-scale ratio: R = Cφ(ReL, Sc)
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Example: Impinging-jet microreactor: Sc = 1000

X(mm)

Z
(m

m
)

2 1 0 1 2

2

1

0

1

2

3

4

5

1.0
0.9
0.8
0.7
0.6
0.5
0.5
0.4
0.3
0.2
0.1
0.0

k
(m

2
/s

2
)

X(mm)

Z
(m

m
)

2 1 0 1 2

2

1

0

1

2

3

4

5

700
636
573
509
445
382
318
255
191
127
64
0

ε
(m

2
/s

3
)

Local values: 1 < ReL < 100 ⇒ high Re model invalid
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Comparison with experiments:

++
++++++

++++++++++
++

++
++

++++

++

++++
++

+++++

+

++

++
++++++++++++
++++++++++++
+
+

+++
++++

++++

Re
j

X

10
1

10
2

10
3

10
410

3

10
2

10
1

10
0

317ms
181ms
61ms
28ms
16.7ms
9.5ms
6.5ms
4.8ms
317ms, sim
181ms, sim
61ms, sim
28ms, sim
16.7ms, sim
9.5ms, sim
6.5ms, sim
4.8ms, sim
X

max
, sim

+

Reaction conversion X versus inlet jet Re



46 CHAPTER 1. BACKGROUND ON SCALAR MIXING

Summary: Small-scale equilibrium models assume that scalar spectrum is fully

developed for a given set of large-scale flow statistics

Non-equilibrium models attempt to capture the evolution of the scalar spectrum start-

ing from arbitrary initial conditions

Note: In both cases, models provide rate of mixing (not shape of PDF)
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Chapter 2

Non-Equilibrium Models

2.1 Non-Equilibrium Models for Scalar Dissipation

To account for initial conditions where the scalar spectrum is not in equilibrium with

the velocity spectrum, a multi-scale model is needed
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For a given Sc and ReL, we can divide the scalar equilibrium spectrum into a finite set

of wavenumber bands:

I.e., a highly simplified spectral model



50 CHAPTER 2. NON-EQUILIBRIUM MODELS

We can then model the scalar variance in each range as a dynamic model with a source

term due to mean gradients and dissipation



2.1. NON-EQUILIBRIUM MODELS FOR SCALAR DISSIPATION 51

Spectral Relaxation Model (Fox 1995, 1997, 1999, 2003)

Example: Sc = 1 and Reλ = 90

The cut-off wavenumbers are defined by

κ0 ≡ 0 (2.1)

κ1 ≡ Re−3/2
1 κη (2.2)

κ2 ≡
(

3

CuRe1 + 2

)3/2

κu (2.3)

κ3 ≡ Sc1/2κu (2.4)
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where

κη ≡ 1

η
=

Re3/2
1

Lu
(2.5)

and

κu ≡ C3/2
u κη (2.6)

with Cu = (0.1)2/3 = 0.2154

The scalar dissipation range starts at

κD ≡ κ3 = Sc1/2κu (2.7)

The scalar energy in each range is defined by

〈φ′2〉n(t) ≡
∫ κn

κn−1

Eφ(κ, t) dκ (2.8)
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These are modeled by ODEs with spectral transport, production, and dissipation:

d〈φ′2〉1

dt
= T1 + γ1Pφ (2.9)

d〈φ′2〉2

dt
= T2 + γ2Pφ (2.10)

d〈φ′2〉3

dt
= T3 + γ3Pφ (2.11)

and

d〈φ′2〉D

dt
= TD + γDPφ − εφ (2.12)

The variance-production term Pφ is known
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The scalar variance is found by summing over all bands:

〈φ′2〉 =
3

∑
n=1

〈φ′2〉n + 〈φ′2〉D (2.13)

The sum of the transport is null, so that

d〈φ′2〉
dt

= Pφ − εφ (2.14)

The model is closed by a small-scale equation for the SDR:

dεφ

dt
= γDPφ

εφ

〈φ′2〉D

+ CD

( ε

ν

)1/2

Tε + Cs

( ε

ν

)1/2

εφ − Cd

εφ

〈φ′2〉D

εφ (2.15)

where

CD ≡ 2Γκ2
D

(ν

ε

)1/2

= 0.02 (2.16)

Note that the right-hand side scales like Re1 = k/(εν)1/2
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Spectral Transfer Rates

The spectral transfer rates determine the dynamics of the model

Based on DNS, the rates are assumed to be local: Tn(〈φ′2〉n−1, 〈φ′2〉n, 〈φ′2〉n+1)

T1 = −(α12 + β12)〈φ′2〉1 + β21〈φ′2〉2 (2.17)

T2 = (α12 + β12)〈φ′2〉1 − (α23 + β23)〈φ′2〉2 − β21〈φ′2〉2 + β32〈φ′2〉3 (2.18)

T3 = (α23 + β23)〈φ′2〉2 − (α3D + β3D)〈φ′2〉3 − β32〈φ′2〉3 + βD3〈φ′2〉D (2.19)

TD = (α3D + β3D)〈φ′2〉3 − βD3〈φ′2〉D (2.20)

Tε = (α3D + β3D)〈φ′2〉3 − βεεφ (2.21)
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The forward-transfer parameters are fit to a fully developed velocity energy spectrum:

α12 = R0
ε

k
α23 =

α12

a
α3D =

2CuRe1α12

aCuRe1 + 3(1 − Sc−1/3)
(2.22)

β12 = cbα12 β23 = cbα23 β3D = cbα3D (2.23)

The backscatter parameters are fit to yield an equilibrium spectrum independent of cb:

β21 = cb(α23 − α12) β32 = cb(α3D − α12) (2.24)

βD3 = cbα12Sc1/2(1 − b)/b βε = cbSc1/2(1 − b) (2.25)

The time evolution of 〈φ′2〉n and mechanical-to-scalar time-scale ratio R depends on

the initial scalar spectrum
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Example 1: 〈φ′2〉1 = 1 and others 〈φ′2〉n = 0 (all scalar energy in largest scales):

micromixing is slower than equilibrium rate
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Example 2: 〈φ′2〉1 = 1/2, 〈φ′2〉3 = 1/2 and others 〈φ′2〉n = 0 (two length scales):

micromixing rate is complicated
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Example 3: 〈φ′2〉3 = 1 and others 〈φ′2〉n = 0 (all energy at small length scales): mi-

cromixing rate overshoots equilibrium
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Example 4: 〈φ′2〉D = 1 and others 〈φ′2〉n = 0 (all energy at dissipation scales): mi-

cromixing rate higher than equilibrium
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2.2 Differential Diffusion

Basic question: How do covariance and joint scalar dissipation rate depend on Γα 6=

Γβ for large Re?

For example, in combustion H2 and small MW free radicals diffuse much faster than

hydrocarbons

How does Γα � Γβ change the structure of a turbulent diffusion flame?

This question cannot be answered without chemistry, so we will look at an easier

problem of two inert scalars in homogeneous turbulence
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First, since molecular diffusivity only has a direct effect on the dissipation range, we

define a scalar-gradient correlation coefficient:

gαβ ≡
〈(∇φ′

α) · (∇φ′
β)〉

√

〈|∇φ′
α|2〉〈|∇φ′

β|2〉
=

εαβ√
εααεββ

(2.26)

If scalar fields are correlated at the dissipative scales, gαβ = 1

This occurs when initially 〈φα〉 = 〈φβ〉 and Γα = Γβ

Differential diffusion will have an indirect effect on the energy-containing scales, which

is measured by the scalar correlation coefficient:

ραβ ≡
〈φ′

αφ′
β〉

√

〈φ′2
α〉〈φ′2

β〉
(2.27)
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This is the correlation coefficient that can be measured experimentally

We would like to estimate the dependence of ραβ and gαβ on ReL for turbulent mixing

with and without mean scalar gradients

Homogeneous Turbulence

In stationary, homogeneous turbulence (i.e., Eu(κ) is time independent), the scalar

covariance and joint scalar dissipation rate reduce to

d〈φ′
αφ′

β〉
dt

= −〈uiφα〉Giβ − 〈uiφβ〉Giα − γαβεαβ (2.28)
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and

dεαβ

dt
= CB

(ε

ν

)1/2

εαβ − Cdγαβ

εαβ

〈φ′
αφ′

β〉D
εαβ (2.29)

where

Giα ≡
∂〈φα〉

∂xi
(2.30)

are uniform (i.e., constant) scalar gradients

Although in DNS data sets Giα and Giβ are usually aligned in the same direction, they

need no be so (e.g., they could be orthogonal)
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Observing these equations, we see that the only effect of differential diffusion comes

from

γαβ ≡
Γα + Γβ

2
√

ΓαΓβ

=
1

2

(

Γα

Γβ

)1/2

+
1

2

(

Γβ

Γα

)1/2

(2.31)

which takes on values 1 ≤ γαβ

In limiting case of Γα = Γβ, γαβ = 1

We need a model for the scalar flux (gradient diffusion):

〈uiφα〉 = −ΓTGiα (2.32)

where ΓT is turbulent diffusivity (independent of molecular Sc)
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We also need a model for the covariance in the dissipation range (Re−1
1 ≡ Re−1/2

L ):

〈φ′
αφ′

β〉D =
Cαβ

Re1
〈φ′

αφ′
β〉 (2.33)

where Cαβ has weak dependence on Sc but becomes constant at high Re1 (shown using

DNS)

The governing equations then reduce to

d〈φ′
αφ′

β〉
dt

= 2ΓTGiαGiβ − γαβεαβ (2.34)

and

dεαβ

dt
= CB

(ε

ν

)1/2

εαβ −
(

Re1Cd

Cαβ

)

γαβ

εαβ

〈φ′
αφ′

β〉
εαβ (2.35)

which will be our starting point for studying ραβ and gαβ
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Mean Scalar Gradients

We first consider the case with mean gradients (production term for covariance)

For this case, the statistics reach a steady state where

εαβ = 2ΓT

GiαGiβ

γαβ
(2.36)

and

〈φ′
αφ′

β〉 =

(

kCd

εCB

)(

γαβεαβ

Cαβ

)

(2.37)

These steady-state values can be used to find the correlation coefficients:

gαβ =
1

γαβ

GiαGiβ

|Gα||Gβ|
=

cos(θαβ)

γαβ
(2.38)
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where θαβ is the angle between the mean scalar gradients, and

ραβ =

(

√

CααCββ

Cαβ

)

γαβgαβ =

(

√

CααCββ

Cαβ

)

cos(θαβ) (2.39)

Thus, for very large Re we find

ραβ → cos(θαβ) (2.40)

gαβ =
cos(θαβ)

γαβ
(2.41)

so that only gαβ depends on differential diffusion (i.e., energy-containing scales are

independent of molecular diffusion)

Overall, differential diffusion has a very small effect in the case of mean scalar

gradients (which is the case closest to inhomogeneous mixing)
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Decaying Scalars

This case is more subtle because there are no production terms to drive the process

Correlation coefficients depend on small differences in decay rates

Using the definitions of the correlation coefficients, from Eqs. (2.34) and (2.35) we can

derive

dραβ

dt
= −1

2

(

2
γαβεαβ

〈φ′
αφ′

β〉
− εαα

〈φ′2
α〉

− εββ

〈φ′2
β〉

)

(2.42)

and

dgαβ

dt
= −Re1Cd

2

(

2

Cαβ

γαβεαβ

〈φ′
αφ′

β〉
− 1

Cαα

εαα

〈φ′2
α〉

− 1

Cββ

εββ

〈φ′2
β〉

)

(2.43)

Note that these equations contain only the dissipation terms (production terms cancel)
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The vortex-stretching term appears in the scalar time-scales equation:

d

dt

(

γαβεαβ

〈φ′
αφ′

β〉

)

=
( ε

ν

)1/2
[

CB −
(

Cd −
Cαβ

Re1

)

kγαβεαβ

εCαβ〈φ′
αφ′

β〉

]

γαβεαβ

〈φ′
αφ′

β〉
(2.44)

where Re1Cd > Cαβ

Note that the time scale equation has characteristic rate of (ε/ν)1/2 and thus quickly

reaches a quasi-steady state at high Re:

kγαβεαβ

εCαβ〈φ′
αφ′

β〉
=

CB

Cd − Cαβ/Re1
(2.45)

Thus, in the limit of large (but finite) Reynolds numbers:

γαβεαβ

Cαβ〈φ′
αφ′

β〉
=

εCB

kCd

[

1 +
Cαβ

Cd
Re−1

1 +O(Re−2
1 )

]

(2.46)
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where lowest-order term is independent of Sc

This result can be used in Eqs. (2.42) and (2.43) to find

dραβ

dt
= − εCB

2kCd

(

2Cαβ − Cαα − Cββ

)

(2.47)

and

dgαβ

dt
=

dραβ

dt
(2.48)

where we have kept only the lowest-order terms

We can conclude that

1. Both correlation coefficients change at the same rate proportional to ε/k
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2. De-correlation will occur only if 0 < Cαα + Cββ ≤ 2Cαβ (From DNS, this is the

observed behavior)

3. At high Re the value of Cαβ approaches a Sc-independent constant, thus de-correlation

becomes very, very slow

4. Whether or not ραβ → 0 for large t will depend on the evolution of Cαβ ⇒ difficult

to study with DNS due to long simulation times

Differential diffusion for reacting scalars is likely to scale in a similar manner to inert scalars

Thus, reaction products produced at small scales will be more sensitive to differential diffusion

than reactants introduced at large scales
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2.3 Multiscale Model for Differential Diffusion

Only DNS resolves the diffusive scales (and thus can treat differential diffusion ex-

actly) ⇒ A multi-scale model is needed in LES/RANS methods

Multi-Variate SR Model

Defining the average diffusivity by

Γαβ ≡
Γα + Γβ

2
(2.49)

the model equations for the cospectrum 〈φ′
αφ′

β〉 and joint dissipation εαβ are exactly

the same!
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The covariance is found by summing:

〈φ′
αφ′

β〉 =
3

∑
n=1

〈φ′
αφ′

β〉n + 〈φ′
αφ′

β〉D (2.50)

The covariance at dissipation scales obeys

d〈φ′
αφ′

β〉D

dt
= TD + γDPαβ − γαβεαβ (2.51)

De-correlation at small scales is due to molecular diffusion:

dεαβ

dt
= Pε + CD

( ε

ν

)1/2

Tε + Cs

( ε

ν

)1/2

εαβ − Cd

γαβεαβ

〈φ′
αφ′

β〉D
εαβ (2.52)

wherein the covariance-dissipation-production term Pε is defined by

Pε ≡ − γD

γαβ

(

εα

〈φ′2
α〉D

〈uiφα〉
∂〈φβ〉

∂xi
+

εβ

〈φ′2
β〉D

〈uiφβ〉
∂〈φα〉

∂xi

)

(2.53)
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For differential diffusion, γαβ ≥ 1

The dissipation transfer rate:

Tε = γ−1
αβ (α3D + β3D)〈φ′

αφ′
β〉3 − βεεφ (2.54)

will depend on the Schmidt number through γαβ and βε

The SR model can be solved with different initial conditions to determine how the

correlation coefficients ραβ and gαβ depend on Sc and Re
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Decaying Scalars

No backscatter (Left) cb = 0: non-zero asymptotes

Backscatter (Right) cb = 1: zero asymptotes (consistent with DNS)

De-correlation “leaks” from small scales to large scales due to backscatter



Chapter 3

PDF Description of Turbulent Mixing

We will now consider methods to find the joint PDF

These methods are called transported PDF methods

77
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3.1 Introduction

We consider one-point velocity, composition PDFs:

• The joint PDF contains no information concerning local velocity and/or scalar

gradients. (A two-point description would be required to describe the gradients)

• All non-linear terms involving spatial gradients require transported PDF closures.

Examples of such terms are viscous dissipation, pressure fluctuations and scalar

dissipation (micromixing)
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Or one-point composition PDFs:

• There is no direct information on the velocity field, and thus a turbulence model

is required to provide this information.

• There is no direct information on scalar transport due to velocity fluctuations. A

PDF scalar-flux model is required to describe turbulent scalar transport.

• There is no information on the instantaneous scalar dissipation rate and its cou-

pling to the turbulence field. A transported PDF micromixing model is required

to determine the effect of molecular diffusion on both the shape of the PDF and

the rate of scalar variance decay.
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Velocity, Composition PDF

Formally, the one-point velocity, composition PDF is defined by

fU,φ(V, ψ; x, t) dV dψ ≡

Prob {(V < U(x, t) < V + dV) ∩ (ψ < φ(x, t) < ψ + dψ)} (3.1)

We are interested in this PDF because:

If fU,φ(V, ψ; x, t) were known, then all one-point statistics of U and φ

would also be known

Formally, the statistics are found by integration:

〈Q(U, φ)〉 =

+∞
∫∫

−∞

Q(V, ψ) fU,φ(V, ψ; x, t) dV dψ (3.2)
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and some of the most widely used are

〈U〉 mean velocity,

〈φ〉 mean composition,

〈uiuj〉 Reynolds stresses,

〈φ′
αφ′

β〉 composition covariances,

〈uiφ
′
α〉 scalar fluxes,

and

〈S(φ)〉 mean chemical source term.
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Moreover, higher-order statistics are also available, e.g.,

〈uiujuk〉 triple correlations.

Thus, solutions to the PDF transport equation will provide more information than is

available from RANS and LES models without the problem of closing the chemical

source term

Note, however, that non-linear gradient statistics remain unclosed:

〈

∂φ′

∂xi

∂φ′

∂xi

〉

Closure models will be required for such terms
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Composition PDF

For reacting flows, the chemical source term involves only φ

Thus, in principal, we need only consider the composition PDF:

fφ(ψ; x, t) =
∫ +∞

−∞

fU,φ(V, ψ; x, t) dV (3.3)

However, since it will require us to use a gradient-diffusion model for the velocity

fluctuations, the composition PDF should only be used with turbulent-viscosity-based

and LES models

With Reynolds-stress (second-order) models, the velocity, composition PDF provides

a consistent closure
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3.2 Velocity, Composition PDF Transport Equation

Starting from the Navier-Stokes equation:

DUi

Dt
≡ ∂Ui

∂t
+ Uj

∂Ui

∂xj
= Ai (3.4)

where

Ai ≡ ν
∂2Ui

∂xj∂xj
− 1

ρ

∂p

∂xi
+ gi (3.5)

and the scalar transport equation:

Dφα

Dt
≡ ∂φα

∂t
+ Uj

∂φα

∂xj
= Θα (3.6)
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where

Θα ≡ Γα
∂2φα

∂xj∂xj
+ Sα(φ) (3.7)

We can derive a transport equation for the joint velocity, composition PDF

There are at least two methods that can be used

1. starting from “fine-grained” PDF (Pope 2000, Turbulent Flows)

2. starting from an arbitrary function of U and φ (Pope 1985)

The first method is more “formal” and requires manipulation of delta functions

The second method better reveals the assumptions that are made along the way
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Joint PDF Transport Equation: Final Form

∂ fU,φ

∂t
+ Vi

∂ fU,φ

∂xi
= − ∂

∂Vi

[

〈Ai|V, ψ〉 fU,φ

]

− ∂

∂ψi

[

〈Θi|V, ψ〉 fU,φ

]

(3.8)

From this expression, it can be seen that the joint PDF evolves by transport in

(i) real space due to the fluctuating velocity field V,

(ii) velocity phase space due to the conditional acceleration term 〈Ai|V, ψ〉,

(iii) composition phase space due to the conditional reaction/diffusion term 〈Θi|V, ψ〉.

NOTE: This procedure can be applied to find the transport equation for any set of random fields
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Conditional Fluxes: The Unclosed Terms

The conditional acceleration comes from the NS equation:

〈Ai|V, ψ〉 =

〈(

ν
∂2Ui

∂xj∂xj
− 1

ρ

∂p′

∂xi

)

|V, ψ

〉

− 1

ρ

∂〈p〉
∂xi

+ gi (3.9)

Gravity and mean pressure effects are closed, but viscosity and pressure fluctuations

require a model

The conditional diffusion and reaction term comes from the scalar equation:

〈Θα|V, ψ〉 =

〈

Γα
∂2φα

∂xj∂xj
|V, ψ

〉

+ Sα(ψ) (3.10)

The most important reason for using PDF methods is now obvious: The chemical

source term is closed!
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3.3 Composition PDF Transport Equation

The transport equation for the composition PDF can be found from that for the joint

PDF

Derivation of Transport Equation

Integrating out the velocity:

∫ +∞

−∞

{

∂ fU,φ

∂t
+ Vi

∂ fU,φ

∂xi
= − ∂

∂Vi

[

〈Ai|V, ψ〉 fU,φ

]

− ∂

∂ψi

[

〈Θi|V, ψ〉 fU,φ

]

}

dV (3.11)

yields
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∂ fφ

∂t
+ 〈Ui〉

∂ fφ

∂xi
+

∂

∂xi

[

〈ui|ψ〉 fφ

]

=

− ∂

∂ψi

[

〈Γi∇2φ′
i|ψ〉 fφ

]

− ∂

∂ψi

[(

Γi∇2〈φi〉+ Si(ψ)
)

fφ

]

(3.12)

This equation is the starting point for deriving PDF-based mixing models: (condi-

tional PDF models, CMC model, multienvironment PDF, etc.)

It contains two unclosed terms:

1. Scalar-conditioned velocity fluctuations: 〈ui|ψ〉

2. Molecular mixing: 〈Γi∇2φ′
i|ψ〉

Models are required for both terms, but we will consider only the first for now
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Scalar-Conditioned Velocity Fluctuations

Velocity fluctuations conditioned on the scalar(s) can be modeled in two forms

The first form holds when the velocity and scalars are both Gaussian:

〈ui|ψ〉 = 〈uiφ
T〉〈φ′φ′T〉−1(ψ − 〈φ〉) (3.13)

In general, this is rarely the case (especially for reacting scalars)

The second model invokes a gradient-diffusion hypothesis:

〈ui|ψ〉 = −ΓT

fφ

∂ fφ

∂xi
(3.14)

Although not exact, this model is more general and is consistent with using a gradient-

diffusion model for the scalar flux
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Using the gradient-diffusion model, the composition PDF follows:

∂ fφ

∂t
+ 〈Ui〉

∂ fφ

∂xi
=

∂

∂xi

[

ΓT

∂ fφ

∂xi

]

− ∂

∂ψi

[

〈Γi∇2φ′
i|ψ〉 fφ

]

− ∂

∂ψi

[(

Γi∇2〈φi〉+ Si(ψ)
)

fφ

]

(3.15)

where the turbulent diffusivity ΓT(x, t) depends on the local values of k and ε and the

molecular diffusion term Γi∇2〈φi〉 is negligible at high Reynolds numbers

In this equation, the chemical source term is closed (and thus exact)

However, a micromixing model must be developed for 〈Γi∇2φ′
i|ψ〉 before the equa-

tion can be solved to find fφ
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3.4 Models for Conditional Acceleration

PDF modeling is primarily concerned with closing the conditional fluxes

For the velocity field, the conditional acceleration must be modeled:

〈Ai|V, ψ〉 = 〈A′
i|V, ψ〉+ ν

∂2〈Ui〉
∂xj∂xj

− 1

ρ

∂〈p〉
∂xi

+ gi (3.16)

where the unclosed fluctuating component is defined by

〈A′
i|V, ψ〉 ≡

〈

ν
∂2ui

∂xj∂xj

∣

∣

∣

∣

∣

V, ψ

〉

−
〈

1

ρ

∂p′

∂xi

∣

∣

∣

∣

V, ψ

〉

(3.17)

The two unclosed terms are

1. fluctuating viscous forces
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2. fluctuating pressure forces

The first term leads to turbulent energy dissipation and is relatively easy to model

The second term contributes to the complicated interactions between various velocity

components and is difficult to model in a general way

Velocity PDF: Decoupling from the Scalar Field

For passive scalars, the acceleration does not depend on the scalars

This implies that

〈A′
i|V, ψ〉 = 〈A′

i|V〉 (3.18)



94 CHAPTER 3. PDF DESCRIPTION OF TURBULENT MIXING

We can thus integrate out the scalars, and consider first only the velocity PDF:

∂ fU

∂t
+ Vi

∂ fU

∂xi
= − ∂

∂Vi
[〈Ai|V〉 fU] (3.19)

where closure requires a model for

〈A′
i|V〉 ≡

〈

ν
∂2ui

∂xj∂xj

∣

∣

∣

∣

∣

V

〉

−
〈

1

ρ

∂p′

∂xi

∣

∣

∣

∣

V

〉

(3.20)

In general, the PDF model can be formulated in terms of

V, 〈U〉, 〈uiuj〉,
∂〈U〉
∂xi

, and ε,

where ε can be treated as a deterministic variable, or modeled as a random process

using a separate stochastic model
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The PDF model must reproduce the known behavior of fU and its statistics

For example, in homogeneous turbulence with uniform shear it is known that fU be-

comes Gaussian with time-dependent Reynolds stresses

The conditional acceleration must therefore allow for a Gaussian fU

Velocity PDF Closures

The simplest models are based on a linear stochastic process:

〈A′
i|V〉 = Gij

(

Vj − 〈Uj〉
)

− C0ε

2 fU

∂ fU

∂Vi
(3.21)
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where Gij(x, t) is a second-order tensor which depends on

〈uiuj〉,
∂〈U〉
∂xi

, and ε

All of the important physics that determine the Reynolds stresses must be contained

in G (thus, most of the modeling work is still to come!)

A linear Fokker-Planck equation results:

∂ fU

∂t
+ Vi

∂ fU

∂xi
+

(

ν
∂2〈Ui〉
∂xj∂xj

− 1

ρ

∂〈p〉
∂xi

+ gi

)

∂ fU

∂Vi
=

− ∂

∂Vi

[

Gij

(

Vj − 〈Uj〉
)

fU

]

+
C0ε

2

∂2 fU

∂Vi∂Vi
(3.22)

Linear Fokker-Planck equations admits a multi-variate Gaussian PDF as a solution
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Generalized Langevin Model

A more complete acceleration model must account for the anisotropy tensor b

In practice, this is done by making stochastic versions of Reynolds stresses models

Gij =
ε

k

(

α1δij + α2bij + α3b2
ij

)

+ Hijkl
∂〈Uk〉

∂xl
(3.23)

where the fourth-order tensor H is a linear function of anisotropy tensor b and con-

tains nine model parameters:

Hijkl = β1δijδkl + β2δikδjl + β3δilδjk

+ γ1δijbkl + γ2δikbjl + γ3δilbjk + γ4δklbij + γ5δjlbik + γ6δjkbil (3.24)
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Pope and co-workers have made detailed comparisons between the GLM and turbu-

lent flow data. In general, the agreement is good for flows where the corresponding

Reynolds stress model performs adequately.

Despite the ability of the GLM to reproduce any realizable Reynolds stress model, it

is not consistent with DNS data for homogeneous turbulent shear flow.

In order to overcome this problem and to incorporate the Reynolds-number effects

observed in DNS, a stochastic model for the acceleration can be formulated

It remains to be seen how well such models will perform for more complex

inhomogeneous flows
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The conditional diffusion term has the same form as the viscous term:

〈Γα∇2φα|V, ψ〉 = 〈Γα∇2φ′
α|V, ψ〉+ Γα∇2〈φα〉 (4.1)

However, it is much more difficult to model since the scalar fields are almost always

non-Gaussian

In fact, because scalars fields are bounded and correlated, we cannot use a simple linear

closure like the (linear) Langevin model
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4.1 Some Useful Constraints

Before looking at particular closures, it is important to understand the constraints that

they must satisfy

1. Mass conservation: averaging the model over all velocities and compositions

should result in not net changes

〈〈Γα∇2φ′
α|U, φ〉〉 = 〈Γα∇2φ′

α〉 = 0 (4.2)

(I) The molecular mixing model must leave the scalar mean unchanged
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2. Covariance dissipation: multiplying by the scalar fluctuation and averaging yields

the scalar dissipation rate

〈φ′
β〈Γα∇2φ′

α|U, φ〉〉 = Γα〈φ′
β∇2φ′

α〉

= −Γα〈(∇φ′
α) · (∇φ′

β)〉+ Γα∇ · 〈φ′
β∇φ′

α〉
(4.3)

or, because εαβ is modeled separately,

〈φ′
βΓα∇2φα〉 = −1

2

√

Γα

Γβ
εαβ + Γα∇ · 〈φ′

β∇φ′
α〉 (4.4)

(II) The molecular mixing model must yield the correct joint scalar dissipation rate
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3. Local anisotropy: multiplying by the velocity fluctuation and averaging yields

the small-scale velocity-scalar correlation

〈ui〈Γα∇2φ′
α|U, φ〉〉 = Γα〈ui∇2φ′

α〉

= −Γα〈(∇ui) · (∇φ′
α)〉+ Γα∇ · 〈ui∇φ′

α〉.
(4.5)

Thus, local isotropy requires

〈uiΓα∇2φ′
α〉 = 0, (4.6)

(III) Molecular mixing model must be uncorrelated with velocity at high Re

Note that this constraint implies that the mixing model should depend on the

velocity V (which is usually not the case!)
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Most micromixing models have been developed in the context of composition PDFs

where conditioning is limited to scalars:
〈

Γα∇2φ′
α|ψ
〉

Thus usually only constraints (I) and (II) are considered
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4.2 Desirable Properties for Mixing Models

In addition to moment constraints, there are several desirable properties:

(i) Inert scalar PDF should relax to Gaussian form.

(ii) All scalars must remain in the allowable region.

(iii) Conserved linear combinations must be maintained.

(iv) Mixing should be local in composition space.

(v) Mixing rate should depend on scalar length scales.

(vi) Re, Sc, and Da dependencies should be taken into account.
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4.3 Physical Basis for Desirable Properties

(i) Why Gaussian?

DNS studies of inert scalar mixing have shown that

• PDF of an inert scalar evolves through a series of “universal” shapes that are

similar to a beta PDF

• scalar dissipation rate strongly depends on the initial scalar length-scale distribu-

tion (i.e., the initial scalar spectrum)

• limiting form of the scalar PDF is nearly Gaussian
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These observations suggest that the development of molecular mixing models can

proceed in two separate steps:

1. Generate a mixing model that predicts the correct joint scalar PDF shape for a

given scalar covariance matrix, including the asymptotic collapse to a Gaussian

2. Couple it with a model for the joint scalar dissipation rate that predicts the cor-

rect scalar covariance matrix, including the effect of the initial scalar length-scale

distribution

Most molecular mixing models concentrate on step 1. However, for “practical” react-

ing flow applications, step 2 can be very important



108 CHAPTER 4. MICROMIXING MODELS FOR CONDITIONAL DIFFUSION

(ii) Why worry about the allowable region?

Consideration of the allowable region comes from the very nature of chemically react-

ing flows:

• All chemical species concentrations are, by definition, positive: φ ≥ 0. Moreover,

the maximum (φmax) and minimum (φmin) concentrations observed in a particu-

lar system will depend on the initial conditions, the extents of reaction, and the

concentrations of other species

• Reaction-stoichiometry plus element-conservation constraints put non-trivial bounds

on the composition vector φ. Interior of these bounds forms the allowable region
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Example: nonpremixed one-step reaction A + B ↔ Y
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(iii) Why linearity?

If the molecular diffusion coefficients are identical, chemical elements are conserved:

ΛSc = 0 (4.7)

the transport equations for the chemical species imply that

Dcc

Dt
= Γ∇2cc (4.8)

where cc is the (conserved) element “concentration” vector.

Thus, a viable mixing model must satisfy

Λ〈Γ∇2c|c〉 = 〈Γ∇2cc|cc〉 (4.9)
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In general, Eq. (4.9) will hold if the mixing model is linear in c and employs the same

mixing time for every scalar (e.g., the IEM model)

〈Γ∇2c|c〉 = − 1

2τφ
(φ − 〈φ〉). (4.10)

Non-linear variations of IEM have also been proposed (e.g., GIEM)

〈Γ∇2c|c, ζ〉 = α(ζ, t)(β− c) (4.11)

where β(t) is chosen to conserve the scalar means:

β(t) ≡ 〈α(ξ, t)c〉
〈α(ξ, t)〉 (4.12)

GIEM models the mixture fraction using

〈Γ∇2ξ |ζ〉 = α(ζ, t)(βξ − ζ) (4.13)
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where βξ(t) is the time-dependent intersection point with the ζ-axis, and α(ζ, t) quan-

tifies the deviations from linearity:

Thus, unlike IEM, the GIEM relaxes to a Gaussian PDF for mixture fraction



4.3. PHYSICAL BASIS FOR DESIRABLE PROPERTIES 113

(iv) Why should mixing be local in composition space?

Local interactions refer to neighboring points in composition space

In general, since mixing in composition space is continuous, stochastic models that

“jump” from point to point are not physical

The problems that occur due to non-local models is best illustrated with a “flame

sheet” where

Y(ξ) = min

(

ξ

ξst
,

1 − ξ

1 − ξst

)

(4.14)
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Flame sheet:

With fast chemistry, mixing moves along the flame sheet starting from 0 or 1

Non-local mixing generates points in allowable region away from flame sheet
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IEM is non-local: homogeneous case

dξ

dt
=

Cφε

2k
(〈ξ〉 − ξ) (4.15)

dY

dt
=

Cφε

2k
(〈Y〉 − Y) + SY(Y, ξ) (4.16)

Mixture fraction follows

ξ(t) = 〈ξ〉+ (ξ(0)− 〈ξ〉) exp

(

−Cφε

2k
t

)

. (4.17)

Likewise, if 〈Y〉(0) lies well below the reaction zone, the IEM model will collapse all

points outside the reaction zone towards the mean values without passing through

the reaction zone
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(v) Why account for the scalar length-scale distribution?

DNS of inert scalars with different initial spectra show that the scalar dissipation rate

is very dependent on the length-scale distribution

We have seen that the spectral relaxation (SR) model can account for the length-scale

distribution using a multi-scale model

Accounting for the length-scale distribution is similar to accounting for dissipation

fluctuations in the flamelet model

Fluctuations lead to local extinction (fast mixing) in reacting flows
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(vi) Why include Re, Sc, and Da dependencies?

At very high Reynolds numbers, turbulent mixing theory predicts that the scalar dis-

sipation rate will be independent of Re and Sc.

In general, the inclusion of dependencies on Re, Sc, or Da is difficult and mostly done

on a case-by-case basis.

Examples where the Sc-dependence may be significant include liquid-phase reacting

flows at moderate Reynolds for which the Schmidt number is very large and gas-phase

reacting flows for which the molecular diffusion coefficients of some species differ by

an order of magnitude
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4.4 Three Simple Mixing Models

Rather than try to look at all proposed models, we will concentrate on 3 typical ones:

1. coalescence-dispersion model

2. interaction-by-exchange-with-the-mean model

3. Fokker-Planck model
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CD Model

This model was first proposed to describe mixing of liquid droplets

It involves a jump process:

(φA1, φB1)1

(φA2, φB2)2

coalescence−−−−−−→







φ∗
A = (φA1 + φA2)/2

φ∗
B = (φB1 + φB2)/2







dispersion−−−−−→
(φ∗

A, φ∗
B)1

(φ∗
A, φ∗

B)2

where (·, ·)1 and (·, ·)2 are the compositions of fluid particle 1 and 2

The CD model is easy to program in Monte-Carlo simulations (randomly select two

particles with a fixed probability)
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In terms of the constraints, the CD model’s behavior is

• (I) The mean concentration is the same before and after mixing

• (II) All scalars have the same dissipation rate, so joint scalar dissipation rate can

not be completely controlled

• (III) Velocity is not included, so local anisotropy cannot be controlled

In terms of the desirable properites, the CD model’s behavior is

• (i) The limiting PDF is not Gaussian

• (ii) All scalars remain in allowable region
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• (iii) Linear combinations are conserved

• (iv) Scalar values jump, so CD model is not local

• (v) Length-scale distribution is not treated explicitly

• (vi) Re, Sc and Da are not accounted for

Despite its limitations, the CD model is still used for PDF simulations of turbulent

reacting flows!
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IEM Model

The IEM model uses a simple linear deterministic equation:

〈Γα∇2φ′
α|ψ〉 =

εα

2〈φ′2
α〉

(〈φα〉 − ψα) (4.18)

where εα is found from a separate model for the scalar dissipation rate

In most applications, a scale-similarity model is used:

εα

〈φ′2
α〉

= Cφ
ε

k
(4.19)

with Cφ ≈ 2
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In terms of the constraints, the IEM model’s behavior is

• (I) The mean concentration is conserved due to linear form

• (II) All scalars have the same dissipation rate, so joint scalar dissipation rate can

not be completely controlled

• (III) Velocity is not included, so local anisotropy cannot be controlled unless

velocity-conditioning is used:

〈Γα∇2φ′
α|V, ψ〉 =

εα

2〈φ′2
α〉

(〈φα|V〉 − ψα) (4.20)

But this is difficult due to statistical noise when estimating 〈φα|V〉
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In terms of the desirable properties, the IEM model’s behavior is

• (i) The shape of the PDF does not change!

• (ii) All scalars remain in allowable region

• (iii) Linear combinations are conserved due to linear form

• (iv) Scalar values move continuously towards mean, so IEM model is nearly local

• (v) Length-scale distribution is not treated explicitly

• (vi) Re, Sc and Da are not accounted for
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Due to constant shape, IEM does not work well for homogeneous mixing (i.e., without

mean-scalar gradients)

IEM model is widely used for PDF simulations of turbulent reacting flows and the

results for inhomogeneous cases are reasonable
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FP Model

The Fokker-Planck model adds a nonlinear diffusion term to the IEM model in order

to make the PDF shape relax to Gaussian

For a single scalar, conditional diffusion is related to the conditional dissipation rate:

〈Γ∇2φ′|ψ〉 =
1

2 fφ

∂

∂ψ

(

〈εφ|ψ〉 fφ

)

(4.21)

In principle, if 〈εφ|ψ〉 were known we could use this model for mixing

However, it leads to negative diffusion in phase space and is numerically unstable
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The FP model ‘regularizes’ the diffusion process using

〈Γ∇2φ′|ψ〉 = 2〈Γ∇2φ′|ψ〉 − 〈Γ∇2φ′|ψ〉

= 2〈Γ∇2φ′|ψ〉 − 1

2 fφ

∂

∂ψ

(

〈εφ|ψ〉 fφ

)

=
εφ

〈φ′2〉
(〈φ〉 − ψ)− 1

2 fφ

∂

∂ψ

(

〈εφ|ψ〉 fφ

)

(4.22)

where the final form follows by using the IEM model for conditional scalar Laplacian

The resulting Fokker-Planck equation for fφ has the form of a non-linear diffusion

process

∂ fφ

∂t
=

εφ

〈φ′2〉
∂

∂ψ

[

(ψ − 〈φ〉) fφ

]

+
1

2

∂2

∂ψ2

(

〈εφ|ψ〉 fφ

)

(4.23)

Solution is well behaved, and shape of fφ is determined by the choice of 〈εφ|ψ〉
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Applying the same procedure for multiple (Ns) scalars, leads to an expression of the

form
Ns

∑
α=1

∂

∂ψα

[

〈∇2φ′
α|ψ〉 fφ

]

=
Ns

∑
α=1

Ns

∑
β=1

1

2
√

ΓαΓβ

∂2

∂ψα∂ψβ

(

〈εαβ|ψ〉 fφ

)

(4.24)

or

〈Γα∇2φ′
α|ψ〉 = −1

2

Ns

∑
β=1

[

Mαβ(ψβ − 〈φβ〉) +
1

fφ

∂

∂ψβ

(

〈εαβ|ψ〉 fφ

)

]

(4.25)

This yields a multi-variate Fokker-Planck equation for the composition PDF

However, the user must supply the conditional scalar dissipation rates 〈εαβ|ψ〉

If all scalar are Gaussian, then 〈εαβ|ψ〉 = εαβ is independent of ψ

In general, 〈εαβ|ψ〉 will be hard to determine a priori
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Coefficient matrix M ≡ [Mαβ] can be found using the covariance decay rate:

d〈φ′
αφ′

β〉
dt

= 〈Γαφ′
β∇2φ′

α〉+ 〈Γβφ′
α∇2φ′

β〉

= −γαβεαβ

(4.26)

This yields the following expression for M:

M = (SΓεS−1
Γ

+ ε)C−1 (4.27)

where the matrices on the right-hand side are defined by

SΓ ≡ diag
(√

Γ1, . . . ,
√

ΓNs

)

and ε ≡
[

εαβ

]

(4.28)

and C ≡ 〈φ′φ′T〉 is the scalar covariance matrix.
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In order to see if the FP model satisfies the constraints and desirable properties, we

need to express it as a random process

dφ = −1

2
M(φ − 〈φ〉) dt + B(φ) dW(t) (4.29)

where dW(t) in a multi-variate Wiener process

The diffusion matrix B(φ) is related to 〈ε|φ〉 ≡ [〈εαβ|φ〉] by

B(φ)B(φ)T = 〈ε|φ〉 (4.30)
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In terms of the constraints, the FP model’s behavior is

• (I) The mean concentration is conserved due to linear form of drift term

• (II) The matrix M is defined to yield the correct joint scalar dissipation rates

• (III) Velocity is not included, so local anisotropy cannot be controlled unless

velocity-conditioning is added (problematic due to statistical noise)

In terms of the desirable properties, the FP model’s behavior is

• (i) The shape of the PDF approaches joint Gaussian due to form of 〈ε|ψ〉

• (ii) All scalars remain in allowable region if 〈ε|ψ〉 is defined to have zero flux on

boundaries
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• (iii) Linear property applies only with diffusion coefficients are equal:

dφ = −εS−1
φ UρSρUT

ρS−1
φ (φ − 〈φ〉) dt + Sg(φ)Cg(φ) dW(t) (4.31)

Linearity holds if 〈ε|ψ〉 transforms correctly

• (iv) Scalar values move continuously towards mean, so FP model is nearly local

• (v) Length-scale distribution is treated explicitly using SR model for ε

• (vi) Re and Sc are accounted for explicitly (Da effect must be added to SR model)
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Example: Bivariate FP model for mixture-fraction vector ξ = [ξ1, ξ2]

The allowable region is defined by a right triangle: 0 ≤ ξ1 + ξ2 ≤ 1

The 3 sides of the triangle have normal vectors defined by

n(0, ζ∗
2) =







1

0






n(ζ∗

1, 0) =







0

1






n(ζ∗

1, ζ∗
2) =

1√
2







1

1






(4.32)

The stochastic model has the form

dξ = −εC−1
ξ (ξ − 〈ξ〉) dt + Sg(ξ)Cg(ξ) dW(t) (4.33)

where the covariance matrix is Cξ = [〈ξ ′
iξ

′
j〉]
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For this example, the conditional scalar dissipation rate matrix has three unknown

components:

〈εξ |ζ1, ζ2〉 =







〈ε11|ζ1, ζ2〉 〈ε12|ζ1, ζ2〉

〈ε12|ζ1, ζ2〉 〈ε22|ζ1, ζ2〉






(4.34)

The functional forms of the 3 components must satisfy 3 moment conditions:

〈〈ε11|ξ1, ξ2〉〉 = ε11

〈〈ε12|ξ1, ξ2〉〉 = ε12

〈〈ε22|ξ1, ξ2〉〉 = ε22

(4.35)
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and 6 boundary conditions:

〈ε11|0, ζ∗
2〉 = 0 for all ζ∗

2

〈ε12|0, ζ∗
2〉 = 0 for all ζ∗

2

〈ε12|ζ∗
1, 0〉 = 0 for all ζ∗

1

〈ε22|ζ∗
1, 0〉 = 0 for all ζ∗

1

〈ε11|ζ∗
1, ζ∗

2〉+ 〈ε12|ζ∗
1, ζ∗

2〉 = 0 for all ζ∗
1 + ζ∗

2 = 1

〈ε12|ζ∗
1, ζ∗

2〉+ 〈ε22|ζ∗
1, ζ∗

2〉 = 0 for all ζ∗
1 + ζ∗

2 = 1

(4.36)

The last 6 constrain the diffusion to be zero in the direction of the normal vectors:

〈εξ|ζ1, ζ2〉n = 0
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If we postulate that (like the beta PDF) that the coefficients can depend only on the

first and second moments, then they must have the form:

〈ε11|ζ1, ζ2〉 = a0 + a1ζ1 + a2ζ2 + a3ζ2
1 + a4ζ1ζ2 + a5ζ2

2

〈ε12|ζ1, ζ2〉 = b0 + b1ζ1 + b2ζ2 + b3ζ2
1 + b4ζ1ζ2 + b5ζ2

2

〈ε22|ζ1, ζ2〉 = c0 + c1ζ1 + c2ζ2 + c3ζ2
1 + c4ζ1ζ2 + c5ζ2

2

(4.37)

where the coefficients must satisfy the constraints
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Applying the constraints, we can express coefficients in terms of moments:

〈ε11|ζ1, ζ2〉 = αζ1(1 − ζ1 − ζ2)− βζ1ζ2

〈ε12|ζ1, ζ2〉 = βζ1ζ2

〈ε22|ζ1, ζ2〉 = γζ2(1 − ζ1 − ζ2) − βζ1ζ2

(4.38)

where

α =
ε11 + ε12

〈ξ1(1 − ξ1 − ξ2)〉
β =

ε12

〈ξ1ξ2〉
γ =

ε22 + ε12

〈ξ2(1 − ξ1 − ξ2)〉
(4.39)

We can define the bivariate beta PDF to be the stationary solution to the FP equation

with this diffusion matrix.
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It is remarkable that this result can be extended to N components by inspection:

〈εii|ζ〉 = αiζ i

(

1 −∑
j

ζ j

)

− ∑
j

βijζ iζ j

〈εij|ζ〉 = βijζ iζ j

(4.40)

where the coefficients αi and βij are determined by the constraints 〈〈εij|ξ〉〉 = ε ij

We can thus define the multi-variate beta PDF to be the stationary solution to the FP

model with this diffusion matrix
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4.5 Prospects for Mixing Model Improvements

For reactive scalars, in a PDF context the key unknown terms are the conditional scalar

dissipations 〈ε|φ〉, which depend on Da and premixed/non-premixed, etc.

Unlike for inert scalars (e.g. mixture fraction), the functional dependence of 〈ε|φ〉 on

φ can be quite complex

The modeling challenge for reacting scalars is to find approximate forms for 〈ε|φ〉

For nonpremixed flows, it is useful to decompose 〈ε|φ〉 into mixture fraction ξ and

reaction-progress variable Y (zero at inlets)
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One-step reaction: A + B ↔ Y where Y is product (temperature)

Da = 3 × 104:
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Y is bounded above due to chemistry (element balances) ⇒ shapes of 〈ε|y, ζ〉
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Da = 8 × 104:
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Y is strongly correlated with mixture fraction ξ ⇒ use conditional model where Y

statistics depend on ξ = ζ, e.g., 〈Y|ζ〉 is the conditional mean of Y
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Use PDF transport equation for fξ(ζ) (i.e. PDF of mixture fraction) and quadrature to

model conditional PDF fY|ξ(y|ζ):

fY|ξ(y|ζ) ≈
N

∑
k=1

pk(ζ)δ(y− 〈Y|ζ〉k) (4.41)

where weights pk and abscissas 〈Y|ζ〉k are found from conditional moments:

〈Yα|ζ〉 =
N

∑
k=1

pk(ζ)〈Y|ζ〉α
k α = 0, 1, . . . , 2N − 1 (4.42)

As in other conditional models, fξ(ζ) and 〈εξ|ζ〉 are assumed to be known
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DNS data weights pk(ζ) abscissas 〈Y|ζ〉k
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Provides models for the conditional dissipations:

〈εYξ|y, ζ〉 fY|ξ ≈
N

∑
k=1

pk(ζ)δ(y− 〈Y|ζ〉k)〈εYξ|ζ〉k (4.43)
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where

〈εYξ|ζ〉k = 〈εξ|ζ〉hk(ζ)
∂〈Y|ζ〉k

∂ζ
〈εY|ζ〉k = 〈εξ|ζ〉hk(ζ)

(

∂〈Y|ζ〉k

∂ζ

)2

+ Ek (4.44)
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where scalar dissipation fluctuations are modeled by hk:
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Model has the form of multiple “flamelets” with interaction terms:

∂〈Y|ζ〉k

∂t
=

1

2
〈εξ|ζ〉hk

∂2〈Y|ζ〉k

∂ζ2
+ SY(〈Y|ζ〉k, ζ) + Mk (4.45)
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and

∂pk fξ

∂t
= −1

2

∂2

∂ζ2
(〈εξ|ζ〉hkpk fξ) + Gk fξ (4.46)

where 〈εξ|ζ〉 and fξ are known (e.g. beta PDF)

The conditional micromixing model is represented by Mk and Gk, and controls the rate

of “exchange” between the N environments ⇒ DNS suggests IEM + “engulfment”,

depending on Da

Structure of model allows for coexistence of “burning” and “extinguished” environ-

ments due to fluctuations in scalar dissipation rate (i.e. hk), which are required to cor-

rectly predict partial extinction and re-ignition:
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Da = 8 × 104 Da = 3 × 104
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Extinction/re-ignition increases with decreasing Da
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General Conclusion: Micromixing models for multiple scalars must contain

information about small-scale correlations between scalar gradients

This is especially important for combusting flows where fluctuations in scalar dissi-

pation lead to local extinction

Models that do not account for variations in εξ (e.g. 〈εξ〉k) cannot predict local extinc-

tion; however, just adding a fluctuating scalar dissipation term is not enough!

The (implied) model for 〈ε|φ〉 describes the small-scale correlations ⇒ it is

important to choose it carefully!




