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Why 2d turbulence?Why 2d turbulence?
Geophysical flows : mid latitudes large scale flow,
stratified atmosphere, shallow layers, tropical
hurricanes trajectories, 2d flow frontogenesis, …

layers of fluid where vertical motion is
suppressed by rotation, stratification,

confinement



Other than geophysics..Other than geophysics..

MHD with external mean axial field B0

weak B0 strong B0



Practical forPractical for  studies ofstudies of
complexcomplex or  or multi-phasemulti-phase  turbulent systemsturbulent systems

• Heavy particles advection by 2d flows
• Passive/active scalars advection

 

• Drag reduction: Polymers in turbulent flows

no polymer       with polymer

• Rayleigh-Taylor Instability

Thanks to S. Musacchio PRL 91, 034501 (2003). 

Thanks to L. Vozella,
PRL 96, 134504 (2006)



IdealIdeal  set-up forset-up for  many theoriesmany theories
A very incomplete list  (beyond Kraichnan and Batchelor):

• Statistical mechanics for conservative systems with many degrees of
freedom: Hamiltonian formulation
(Onsager 1949, Robert & Sommeria 1991, Miller 1990, …)

• 2D Conformal theory
 (Polyakov 1993,  Benard et al. 2006)

• Perturbative theories (e.g. Yakhot 2006)

• Closures theories: Eddy Damped Quasi-Normal Markovian
approximation, Test Field Model (Orszag, Kraichnan..)

• Quantum field tools for critical phenomena: Renormalization Group
………..



Literature is very rich..Literature is very rich..

Some papers or reference books on the subject:
• Kraichnan, Phys Fluids 10 (1967)
• Kraichnan & Montgomery, Rep. Prog. Phys. 43 (1980)
• Lesieur, “Turbulence in Fluids” (1990)
• Miller et al, Phys Rev A 45 (1992)
• Frisch, “Turbulence” (1995)
 Tabeling, Phys. Rep. 362 (2002)
 Kellay & Goldburg, Rep. Prog. Phys. 65 (2002)

Andre, Aref, Basdevant, Batchelor, Benzi, Boffetta, Borue, Bouchet, Brachet, Celani, Cenedese, Couder,
Dritschell, Ecke, Eyink, Falkovich, Farge, Flor, Frisch, Goldburg, Gollup, Herring, Larcheveque, Legras,
Lesieur, Lions, Leith, Lilly, Kraichnan, Marchioro, Meneguzzi, McWilliams, Miller, Montgomery, Nelkin,
Onsager, Orszag, Ott, Paret, Politano, Polyakov, Pomeau, Pouquet, Pulvirenti, Rutgers, Sadourny,
Santengelo, Saffman, Shneider, Siggia, Smith, Sommeria,Sulem, Tabeling, Tennekes,Van Heijst, Vergassola,
Vulpiani, Weiss, Yakhot  ………………………………….



Outline of the lessonsOutline of the lessons
• Part 1 : Basic notions

• Part 2 : Inverse cascade

• Part 3 : Direct cascade

• Part 4 : A geophysical application

• Few remarks on open (& uncovered) issues and new
approaches to the field



Part 1: Basic NotionsPart 1: Basic Notions
• Equations

• Conserved quantities

• Double cascade scenario

A half-bubble of about 7 cm diameter on the top 
of a plastic glass. The system is illuminated by 
light diffusing from the bottom of the glass. 
Turbulence is induced from light heating 
and from air motion around the bubble.

Thanks to G. Boffetta



3d incompressible turbulence3d incompressible turbulence

If ν =0 energy is conserved

Consider an incompressible flow

NS eqs. for vorticity

If ν --> 0,  Re=UL/ν −−> ∞, energy dissipation ε=ν<ω2> stays finite
                  dissipative anomaly  

Spectrum follows Kolmogorov behaviour,
but moments of velocity increment 
statistics of order p>3 are highly intermittent

ε



Ekman-Navier-Stokes Ekman-Navier-Stokes turbulenceturbulence

L

h << L

A shallow layer of incompressible fluid 

• vertical motion negligible
  uz= O(h/L) ux,y ≈ 0
• Poiseuille type velocity profile
 ux,y (z) ≈ z2

From 3d Navier-Stokes

To 2d Navier-Stokes + friction Ekman friction (rotating)
Rayleigh friction (stratified)
air friction (soap film)
Hartman friction (MHD)

α



2d2d  incompressible incompressible Navier-StokesNavier-Stokes

For the scalar vorticity 

• At difference with 3d turbulence, no vortex stretching term:

• In 2d inviscid unforced flows, a fluid particle conserves its vorticity :

Consider homogeneous & isotropic 2d flow: 



Conserved quantities & Conserved quantities & energy/enstrophy energy/enstrophy balancebalance

• In 2d there are two main inviscid invariants:

Energy

Enstrophy

where
E(k) = energy spectrum

• In the viscous case ν>0 , balance equations are:

So, in 2d for Re=UL/ν       ∞ (the viscosity ν goes to 0)

No dissipation anomaly for the energy. Energy can not be dissipated at small scale



Exact results Exact results in the steady casein the steady case
In 2d also we have exact relations for the fluxes of energy and enstrophy.
These are obtained with a reasoning similar to that leading to the
 -4/5 law in 3d turbulence:

If the forcing acts at a wavenumber kF :
• For k << kF, energy flux at a constant rate 

• For k >> kF, enstrophy flux at a constant rate 

equivalent of Corssin -Yaglom relation for passive scalar



Spectral relationsSpectral relations
Energy and enstrophy balance eqs. in Fourier space:

triad interactions

kp=k-1 q=k+1

Detailed conservation implies:

+ scaling (constant fluxes)   + absolute equilibrium hypothesis…..



Double cascade scenarioDouble cascade scenario

kF is the wavenumber where the forcing F 
injects energy E and enstrophy  Z

In 1967, Kraichnan argued that in the limit of high Reynolds numbers:

Energy goes from the forced
scale to larger scales at a 
constant rate ε :
kL<< k << kF energy inertial range

kηkL

Enstrophy goes from the forced
scale to smaller scales at a 
constant rate ζ :
kF << k << kη enstrophy inert. range



Dimensional Dimensional scalings scalings in 2din 2d
We look for (quasi) steady states for the flux of energy and enstrophy.
So two different inert  ial ranges with self-similar behaviours..

For η << r << rF, 2d enstrophy cascade

Kraichnan, JFM 47 (1971)

For  rF  << r << rL, 2d energy cascade



BeforeBefore  Exp & DNS results,Exp & DNS results,  two remarkstwo remarks

• Stationarity 
  Enstrophy is dissipated at small scales

  What happens to energy at large scales? 
  Kolmorogorov like inertial scaling is 
  stationary only if a sink of energy is 
 added at large scales,  for example 
 a term “-αu”  or “Δ-p u” in the eq. 

• Scales interactions
In the inverse cascade, hierarchy of eddies

In the direct cascade, only one typical time
Large & small eddies can interact, no time decorrelation mechanism  



Measurements in Measurements in atmospherical atmospherical flowsflows

Mesoscale wind variability (below 5km)
(radar and balloon measurements):
Evidences of E(k)= k ^(-5/3) spectrum

Gage, J. Atmos.Sciences 36 (1979)

Global Atmospheric Sampling Program
(GASP) aircraft measurements:
Good evidences of E(k)= k ^(-5/3) spectrum
between 3-300 km
But evidences of k^(-3) spectrum at larger scales

Nastrom, Gage, Jasperson, Nature 310 (1984)

However things can be complicated by the presence of gravity waves

Horizontal wavelenght



Laboratory experiments: conducting flowsLaboratory experiments: conducting flows

Electric & PIV measurements

Thin layers of conducting fluid driven by
electric current
(perpendicular magnetic field dumps
vertical motion)

(Bondarenko et al, Sommeria, Tabeling,
  Gollup, Cenedese,..)

Decay exp. : time ---> 



Laboratory experiments: soap filmLaboratory experiments: soap film

Soap films
(Couder, Gharib, Derango, Goldburg, Kellay, Bruneau, Rutgers, ….)

A layer of µm, in the plane eddies of size up to cm

Couder set up:
Decay  turbulence

Moving soap film 

LDV visualization



PIV, LDV, interferometry
measurements

Vertical soap filmVertical soap film

99% water
+ a detergent



Experimental steady double cascadeExperimental steady double cascade
Vertical soap film, with vertical combs (1d grid)

M. A. Rutgers, PRL 81, (1998)

1 central vertical comb
Or  two vertical combs as Λ

Varying measurement position,
from forced to decay 2d turbulence



DNS: historicallyDNS: historically

Reasonable resolutions  DNS
started with
Frisch & Sulem at 2562

(Phys. Fluids 27 (1984))
to get to Borue at 40962

(PRL 71 (1993))

Thanks to G. Boffetta

N ≈ 2kt, k=2.8

Standard numerical approach: 
Pseudo-spectral methods, parallel computing 

Square box with periodic BC (unless role of boundaries is of interest)



High-resolution DNS (I)High-resolution DNS (I)
2d NS + linear friction: 

Simulations are designed so to:
• keep constant the ratio L/lF
  at increasing resol. N
• keep constant friction scale at
 increasing εα  = εin − εν :

Energy inertial range
indip. of small scale 
viscosity

Enstrophy inertial range
increases, as expected, with N

* Same forcing except DNS at larger N

(Boffetta, nlin.0612035) 



High-resolution DNS (II)High-resolution DNS (II)

• Corrections to E(k) ≈ k-3 spectrum
 decrease with increasing N
  (to overcome finite size effects both α and ν 
     should possibly go to zero)

• Locally both fluxes are positive and
negative;  independence of cascades
(at the scales where they are maximal, very
poorly correlated)

Physical space
energy flux, r1=0.025L

Physical space 
enstrophy flux, r2=0.0025L



Summary

ε
ε ζ



PartPart  2: energy inverse cascade2: energy inverse cascade

• Experimental & numerical results

• Discussion of main statistical properties :
absence of  intermittency; almost Gaussian statistics

Early studies:  
  . Frisch & Sulem, DNS 1984
  . Sommeria,  electrolyte solution 1986



Some observationsSome observations
Thin electrolyte cell (L x L) : stationary state is assured by Hartman friction

Energy inertial range  :  lF << r << lα < L

Paret & Tabeling, Phys Fluids 10, 1998

    energy spectrum                             vorticity                 vorticity evolution
        to the steady state

• there are no vortices larger than the injection scale (from vortex size distrib.)
  --> no vortices merging, very different from decaying 2d turbulence
• rather, aggregation in clusters of small-size equal sign vortices is the 
transfer mechanism of energy to larger scales



What do we expect ?What do we expect ?
From Kraichnan 1967,
+ DNS (Smith&Yakhot 1993-94) + EXP. (Paret&Tabeling 1998):

• Kolmogorov type spectra E(k)≈ k -5/3

• energy dissipation vanishing for viscosity --> 0;
                                 no dissipative anomaly
• no intermittency corrections in velocity statistics

Paret & Tabeling, Phys Fluids 10, 1998



QuestionsQuestions

• Can we conclude that velocity statistics is (almost)
Gaussian in the inverse turbulent cascade?

• What about our understanding of non-linear terms
(associated to a constant flux) in NS eqs.

   and deviations from Gaussian statistics?

• Is the statistics universal (i.e. forcing independent) ?
   in which sense?



DNS of inverse cascadeDNS of inverse cascade

A convenient forcing is the following: Gaussian & white-in-time  

energy input

Boffetta, Celani, Vergassola PRE 61, 2000

• Resolution is N2=20482, pseudo-spectral methods
• Statistics is over 80 snapshots (one each TL)

• Friction scale lα<< L the box size
• inertial range  lF<< r << lα

• 2 different forcings to probe universality issues



Results for flux & spectrumResults for flux & spectrum

Universal value 

Deviations might appear at low k if different large scale frictions are used



High order statisticsHigh order statistics

Even and odd order longit. moments scale dimensionally: no intermittency 

S7(r)

S5(r)

PDF long increments P(δ||u(r)) &
PDF trasv increments P(δtu(r)) are almost
Gaussian

Skewness is small, Hyperskewness can be high



Departures from Departures from GaussianityGaussianity

Asymmetries, altough small, are not negligible for large fluctuations

Symmetric tail
Antisymm. tail

Odd order statistics and antisymmetric PDF appear universal
Even high order stat. and symmetric PDF appear more forcing dependent 

To have a deeper insight, measure the antisymmetric PDF

Pantisym= P(δ||u(r))  -  P( - δ||u(r)) 



A 2d flow with energy injected at lF and removed at  lα << L
exhibits an inverse cascade of energy characterized as:

• an energy spectrum as predicted by Kraichnan

• no intermittency corrections to dimensional scaling

• universality holds but for some observables

• small but detectable deviations from Gaussian stat.

• closure theory results compatible with numerics
 (Yakhot PRE 60, 1999)

Paret & Tabling, Phys Fluids 10, 1998
Boffetta, Celani, Vergassola PRE 61, 2000

Summary



What happensWhat happens  with small or nowith small or no
large-scale friction ?large-scale friction ?

• No formation of structures at scales r> lF,
if large-scale drag is properly parametrized

• Otherwise, we have the formation 
of structures at scales r> lF

Sukoriansky et al, Phys Fluids 11, 1999



Bose-Einstein condensation of energyBose-Einstein condensation of energy

If the friction scale is larger than the size of the system lα > L
energy accumulates at the largest possible scale
(in the smallest possible mode k0=1/L )

(Kraichnan 1967, Smith & Yakhot 1993, see also Borue 1994)

vorticity
“dipole”

velocity
field

• Strong deviations from E(k) ≈ k-5/3

• Strong deviations from non intermittent stat.



Part 3: Part 3: enstrophy enstrophy direct cascadedirect cascade

•• Experimental & numerical resultsExperimental & numerical results

•• Vorticity Vorticity & velocity& velocity
    statistics    statistics

Early works:
Kraichnan 1967, Batchelor 1969



Recall basic featuresRecall basic features

Energy is exchanged between modes but there 
is not a cascade: E-spectrum E(k) ≈ k-3 

Enstrophy Z ≈ <ω2> cascades at a constant rate ζ 
from large to small scales  (elongation of vorticity patches):

    Z-spectrum Z(k) ≈ k-1 

Eddies are not organized hierarchically in time:
at any scale r, we have the same eddy turn-over-time



Early observations Early observations (mainly (mainly numericsnumerics))

First observations report deviations from the spectrum predicted
by theory:  E(k) ≈ k-3

Steeper spectra (k-α with 3≤ α < 5) associate with the presence
of strong large scale vortices, depending on forcing type.

Decaying turbulence shows long term memory of initial conditions
(see McWilliams 1984)                    NO UNIVERSALITYNO UNIVERSALITY

Benzi, Paternello, Santangelo J. Phys. A, 21 (1988)

long lived vortices spectrum as a superposition of 
     individual structures

E(k) ≈k -4.3



VIDEO

Thanks to S. Espa
Europhys. Lett. 71 (2005)



More recentlyMore recently
Recent simulations of forced 2d direct cascade are more in agreement
with Kraichnan prediction   E(k) ≈ k-3    (+ logarithmic corrections)
  V. Borue, PRL 71, (1993); S.Chen, R. Ecke, G. Eyink, X. Wang, Z. Xiao, PRL 91, (2003)
   C.Pasquero, G.Falkovich, PRE 65 (2002);  E.Lindborg, K.Alvelius, Phys. Fluids 12 (2000)

This is always achieved if coherent structures are removed!This is always achieved if coherent structures are removed!

Remark:



Experimental direct cascadeExperimental direct cascade

Jullien, Paret, Tabeling
Phys. Rev. Lett 83 (1999)

NaCl solution stratified in density

Flow is homogeneous, isotropic, stationary



Vorticity Vorticity statistics in the direct cascadestatistics in the direct cascade

• Vorticity statistics is non intermittent, in agreement with theoretical
predictions (Kraichnan - Batchelor, Falkovich & Lebedev 1994)



Velocity statistics in the direct cascadeVelocity statistics in the direct cascade

-> velocity field is smooth,  δu(r) ≈ c0 r + c1 rh  with h>1,
this behaviour dominates standard structure functions at r<<lF:

From the energy spectrum:

Intermittency can possibly appear only in the scaling behaviour
of the more-than-smooth fluctuations rh  with h>1
           --> inverse structure functions

Biferale, Cencini, Lanotte, 
Vergni, Vulpiani PRL 87 (2001)



Part 4: anPart 4: an  application ofapplication of
geophysical interestgeophysical interest

• Predictability properties
in the inverse energy
cascade

Early studies:
Leith 1971
Leith & Kraichnan, 1972

Boffetta & Musacchio Phys. Fluids 13, (2001)



PredictabilityPredictability  ProblemProblem

We deal with a generic dynamical system, knowing its evolution law and
present status:

We want to know a future state, and the error associated.
In particular given a tolerance threshold δmax about the future state:

Example:
weather forecasting 

Predictability time Predictability time TTpp  is the maximum valueis the maximum value
at which at which one can forecast the systemone can forecast the system

with a tolerancewith a tolerance  δδmaxmax



Dynamical Systems ToolsDynamical Systems Tools
In chaotic dynamical systems (as well as in NS turbulence), 
two initially close states of the system can diverge:  

δ(0)

δ(t)

Infinitesimal perturbations grow exponentially with the maximum
Lyapunov exponent:

 Given tolerance Δ for the future state, and δ(0) as the initial error

• weak depend. on Δ,δ
• average time of system



HoweverHowever……..

In usual applications:
• t can be finite   (can not take limit t --> ∞)
   or perturbation δ might be finite (not infinitesimal)

• perturbation δ can be on some degrees of freedom (e.g. small scales),
  while we want to predict status of other degrees of freedom
  (e.g. large scales)

• details of the non-linear dynamics can be relevant
  (Tp independent of λ,  but depends on Δ,δ)

We need a better estimate!We need a better estimate!  



FiniteFinite  Size Size Lyapunov Lyapunov Exponent Exponent (FSLE)(FSLE)

Linear limit (small perturbation)

δ(t)

δ2 

δ1

T1   T2        t

This represents the error growth rate at scale δ

FSLE

Time of error growth at scale δ

We define a series of thresholds δn=rnδ0, and 
we measure the time Tr(δ) such that δ(t+ Tr)= r δ(t)

Crisanti, Jensen, Paladin, Vulpiani PRL 70 (1993)

FSLE APPLICATIONS:
Predictability problems; Relative dispersion of Lagrangian particles;
Experimental data analysis: laboratory experiments, ocean drifters;….



PredictabilityPredictability  Problem in TurbulenceProblem in Turbulence

In the inverse cascade the initial infinitesimal error at scale
kE(t=0) gets to larger and larger scales

how does the error spectrum grows when the error is at wavenumber
in the inertial range?



HowHow  can we model this?can we model this?

Transfer time at scale k ≈ τ(k) local turn-over time

From Kolmogorov scaling: -->the scale attained by the error at time t: 

The error spectrum is:

Local error grows algebraically (not exponentially)Local error grows algebraically (not exponentially)
Global error energy grows diffusivelyGlobal error energy grows diffusively  
Large scale predict. independent of Large scale predict. independent of LyapunovLyapunov

G=4.19G=4.19
Kraichnan, Leith 1972



DNS of inverse cascadeDNS of inverse cascade

perturbed u’

We consider a field u(x,t) and a slightly perturbed
field at small scales u’(x,t) :

       δ(x,0)=| u(x,0) - u’(x,0)| << 1

and we integrate their dynamics numerically (usual set up)

At later times, we want to estimate: 

u-field



PredictabilityPredictability  in 2d inverse cascadein 2d inverse cascade
Given the error of amlplitude: 

If error amplitude smaller than
fluctuations at the forcing  scale
δ < δu(η) :

If error amplitude are fluctuations of
the inertial range:  δu(η) < δ < δu(L) :

infinitesimal
inertial range
saturation at large scale 

FSLE for turbulence



Results from DNS of 2d inverse cascadeResults from DNS of 2d inverse cascade
Self-similar growth of error Average error energy growth 

Finite Size Lyapunov Exponent 

<EΔ >= Gεt

λ=1.1 λ(δ)=Α ε δ−2

A=3.9

G=4.1 ± 0.1

Boffetta & Musacchio Phys. Fluids 13, (2001)

Chaotic dynamics creates 
uncorrelated energy 4 times 
faster than energy transfer

G is in very good agreement
with theoretical predictions
of Kraichnan & Leith with 
Test Field Model 



Predictability TimePredictability Time
For error amplitude in the inertial range: λ(δ)  =Α ε δ-2

We can calculate the predictability time associated to a maximum
tolerance Δ :

In terms of the error spectrum, by dimensional analysis

Predictability time for an error at scale kPredictability time for an error at scale k

Example:
In the stratosphere L=500km, τ(L)=1 day :   Tp ≈ 6 days



Final part

• Uncovered and/or open issues
• New approaches to 2d
turbulence



AA  brief tour in thebrief tour in the  ““untolduntold””
Some of the uncovered issues:

• Direct cascade with linear friction  “−α ω”
 (analogy with passive scalar transport at small scales)

(remember Massimo Cencini talk)

• Coherent structures in an un-coherent background

• Wavelet approaches to 2d turbulence

Farge, Ann. Rev Fluid Mech 24 (1992)



Some of the uncovered issues:

• Statistical mechanical theories (equilibrium, conservative) for
  2d turbulent flows

• Decaying 2d turbulence : (much different from steady case)
    from Batchelor’s self-similar theory to more recent observations

N=Number density

r=intervotex distance

a=size 



Some of the open issues:

• A well established theory for decaying 2d turbulence

• Theoretical understanding of the direct cascade energy spectrum
shape

•• Universality issues?Universality issues?

• Satisfactory description of coherent structures, of their role, and
link to statistical theories

• Isotropy restoration in 2d flows?

•  A Lagrangian understanding of 2d turbulence:
• partial for direct cascade
• absent for inverse cascade

AA  brief tour in the unknown (III)brief tour in the unknown (III)



Conformal invariance in 2dConformal invariance in 2d  inverse cascadeinverse cascade



Conformal invariant observablesConformal invariant observables

Boundary; Frontier; Cut points

Vorticity clusters characterized
with fractal dimensions as 
in critical system

This result is no longer true
if phases are randomized !



Special thanks Guido Special thanks Guido BoffettaBoffetta

Papers mainly contributing to this talk:

Kraichnan, Physics of Fluids 10, 1417 (1967)
Tabeling, Phys. Rep. 362, 1 (2002)
Smith and Yakhot, Phys. Rev. Lett. 71, 352 (1993)
Smith and Yakhot, Journ. Fluid Mech. 274 115 (1994)
Borue, Phys. Rev. Lett. 71, 3967 (1993)
Kellay and Goldburg, Rep. Prog. Phys. 65 (2002)
Paret and Tabeling, Phys. Rev. Lett. 79, (1997)
Paret, Jullien, Tabeling,Phys. Rev. Lett 83 (1999)
Boffetta, Celani, Vergassola, Phys. Rev. E 61, R29 (2000)
Frisch, Turbulence, 1995
Lesieur, Turbulence in Fluids, 1990
Boffetta, nlin 0612035v1
Boffetta and Musacchio, Phys. Fluids 13 (2001)



Thanks for your attentionThanks for your attention


