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Why 2d turbulence?

Geophysical flows : mid latitudes large scale flow,
stratified atmosphere, shallow layers, tropical
hurricanes frajectories, 2d flow frontogenesis, ...

Jupiter's Red Spots

layers of fluid where vertical motion is
suppressed by rotation, stratification,
confinement

HRC
Apr. 8, 2006




Other than geophysics..

MHD with external mean axial field B,




Practical for studies of

complex or multi-phase turbulent systems

e Heavy particles advection by 2d flows
e Passive/active scalars advection

e Drag reduction: Polymers in turbulent flows

no polymer with polymer

s

)
Thanks to S. Musacchio PRL 91, 034501 (2003).

Thanks to L. Vozella,
PRL 96, 134504 (2006)



Ideal set-up for many theories

A very incomplete list (beyond Kraichnan and Batchelor):

e Statistical mechanics for conservative systems with many degrees of
freedom: Hamiltonian formulation

(Onsager 1949, Robert & Sommeria 1991, Miller 1990, ...)

e 2D Conformal theory
(Polyakov 1993, Benard et al. 2006)

e Perturbative theories (e.g. Yakhot 2006)

e Closures theories: Eddy Damped Quasi-Normal Markovian
approximation, Test Field Model (Orszag, Kraichnan..)

e Quantum field tools for critical phenomena: Renormalization Group



Literature is very rich..

Andre, Aref, Basdevant, Batchelor, Benzi, Boffetta, Borue, Bouchet, Brachet, Celani, Cenedese, Couder,
Dritschell, Ecke, Eyink, Falkovich, Farge, Flor, Frisch, Goldburg, Gollup, Herring, Larcheveque, Legras,
Lesieur, Lions, Leith, Lilly, Kraichnan, Marchioro, Meneguzzi, McWilliams, Miller, Montgomery, Nelkin,
Onsager, Orszag, Ott, Paret, Politano, Polyakov, Pomeau, Pouquet, Pulvirenti, Rutgers, Sadourny,
Santengelo, Saffman, Shneider, Siggia, Smith, Sommeria,Sulem, Tabeling, Tennekes,Van Heijst, Vergassola,
Vulpiani, Weiss, Yakhot .....c.uiiiieiiniiiiininn.

Some papers or reference books on the subject:

Kraichnan, Phys Fluids 10 (1967)

Kraichnan & Montgomery, Rep. Prog. Phys. 43 (1980)
Lesieur, "Turbulence in Fluids” (1990)

Miller et al, Phys Rev A 45 (1992)

Frisch, “"Turbulence” (1995)

> Tabeling, Phys. Rep. 362 (2002)
> Kellay & Goldburg, Rep. Prog. Phys. 65 (2002)



Outline of the lessons

Part 1 : Basic notions

Part 2 : Inverse cascade

Part 3 : Direct cascade

Part 4 : A geophysical application

Few remarks on open (& uncovered) issues and new
approaches to the field



Part 1: Basic Notions

* Equations
« Conserved quantities

* Double cascade scenario

A half-bubble of about 7 cm diameter on the top
of a plastic glass. The system is illuminated by
light diffusing from the bottom of the glass.
Turbulence is induced from light heating

and from air motion around the bubble.

Thanks to G. Boffetta



3d incompressible turbulence

Consider an incompressible flow V-u =10 D

NS egs. for vorticity w =V xu Q#}
Ow+ (u-Vw = (w-V)u+rvViw ,;_:‘
If v =0 energy is conserved E = %/u2d2m = /E(k)dk A

If v --> 0, Re=UL/v ——> », energy dissipation e=v<w?> stays finite
dissipative anomaly

Spectrum follows Kolmogorov behaviour,
but moments of velocity increment
statistics of order p>3 are highly intermittent

([6)u(r)]P) # cprP/3




Ekman-Navier-Stokes turbulence

A shallow layer of incompressible fluid

e vertical motion negligible

) h <<L u,= O(h/L) u,, =0
P e Poiseuille type velocity profile
L U, (z) = z2

From 3d Navier-Stokes

Ou+ (u-Viu=-Vp+vVu+F

(V24 V24 V2)u— (V2 + V2u—au
a~ O(v/h?)

~
Ekman friction (rotating)

) J Rayleigh friction (stratified)
Ou+ (u-V)u=—-Vp+vVu—au+ f o air friction (soap film)

Hartman friction (MHD)
g

To 2d Navier-Stokes + friction




2d incompressible Navier-Stokes

Consider homogeneous & isotropic 2d flow:

omu+ (u-V)u=—-Vp+rvViu+f
V U = O u= (aywa _85E¢)

For the scalar vorticity w =V xu = —V?)

Ow+ (u-V)w=vViw+V xf

e At difference with 3d turbulence, no vortex stretching term:
(w-V)u

e In 2d inviscid unforced flows, a fluid particle conserves its vorticity :

Dw_O
dt



Conserved quantities & energy/enstrophy balance

e In 2d there are two main inviscid invariants:

1
Energy b= §/u2d2x = /E(k)dk where
E(k) = energy spectrum

1
Ensfrophy 7 — §/w2d2x — /kQE(k)dk

® In the viscous case v>0, balance equations are:

dE d7
a - o = (VW)

So, in 2d for Re=UL/v —* oo (the viscosity v goes to O)

- dE - dZ
lim —- =0 ymy - <0

No dissipation anomaly for the energy. Energy can not be dissipated at small scale



Exact results /in fthe steady case

In 2d also we have exact relations for the fluxes of energy and enstrophy.
These are obtained with a reasoning similar to that leading to the
-4/5 law in 3d turbulence: 4

(16u(r)®) = —zer

If the forcing acts at a wavenumber k. :
® For k << k., energy flux at a constant rate e=rv < w? >

([u(x +1) +u(x) - 7°) = ([gju(r)]*) = gé r

® For k >> k., enstrophy flux at a constant rate ¢ =vr < (Vw)?* >

() [Bw(r)?) = ~5¢r

equivalent of Corssin -Yaglom relation for passive scalar



Spectral relations

Energy and enstrophy balance egs. in Fourier space:

0y + 20k E(k) = T(k) (0, + 2vkY)E(k) = k*T (k)

0= [ [ dpdgT(iep0)~ [ /k o (Rl i) () () ()

, C triad interactions
Detailed conservation implies:

T(k,p,q) +T(p,q,k) +T(q,k,p) =0
k2T (k,p,q) + p*T(p,q,k) + ¢*T(q,k,p) =0

SN N /\ﬂmﬂ<

p=k-1 q=k+1

AN \/\/\/ N/

+ scaling (constant fluxes) + absolute equilibrium hypothesis.....




Double cascade scenario

In 1967, Kraichnan argued that in the limit of high Reynolds numbers:

“a enstrophy
. flux Energy goes from the forced

— scale to larger scales at a
»
\
\
\
\

constant rate ¢:
K << k << K¢ energy inertial range

log(E(k))

energy
flux

K3 E(k) ~ 62/3]{7—5/3

Enstrophy goes from the forced
» scale to smaller scales at a
K log(K) K constant rate C:
K<<k << k, enstrophy inert. range

Ke is the wavenumber where the forcing F
injects energy E and enstrophy Z

E(k) ~ C2/3k_3



Dimensional scalings in 2d

We look for (quasi) steady states for the flux of energy and enstrophy.
So two different inertial ranges with self-similar behaviours..

Forn<<r <« r, 2d enstrophy cascade For r. <<r << r,, 2d energy cascade
4
(I8pa()]sw(r)]?) = —5¢r ([6yu(r)]?) = ger
dw?(r) 1 Su(r)\’ Su2 15 3
¢ ~ ~ —(6u(r) ) L) o)
( Tr ) r ( r ) ¢ Tr r
du(r) ~ ¢y dw(r) ~ (/3 5y u(r)] ~ (er)!/?
E(k) ~ 233 1n"Y3(k k) E(k) ~ €2/3=5/3
Kraichnan, JFM 47 (1971)




Before Exp & DNS results, two remarks

e Stationarity 31 1/6
(%)

Enstrophy is dissipated at small scales Ia

What happens to energy at large scales? b S

Kolmorogorov like inertial scaling is
stationary only if a sink of energy is
added at large scales, for example

a term “-ou” or “AP u” in the eq. o T

log(E(k))

enstrophy
flux

® Scales interactions
In the inverse cascade, hierarchy of eddies

2/3

log(k)
7' ™~/ l‘r'
TI U

In the direct cascade, only one typical time 7 ~ 1/ < wWyy,s >
Large & small eddies can interact, no time decorrelation mechanism



Measurements in atmospherical flows

Horizontal wavelenght

Mesoscale wind variability (below 5km)
(radar and balloon measurements):
Evidences of E(k)= k “(-5/3) spectrum

Gage, J. Atmos.Sciences 36 (1979)

Global Atmospheric Sampling Program

(GASP) aircraft measurements:
Good evidences of E(k)= k “(-5/3) spectrum
between 3-300 km

Nastrom, Gage, Jasperson, Nature 310 (1984)

However things can be complicated by the presence of gravity waves



Laboratory experiments: conducting flows

Thin layers of conducting fluid driven by
electric current

(perpendicular magnetic field dumps
vertical motion)

(Bondarenko et al, Sommeria, Tabeling,
Gollup, Cenedese,..)

Electric & PIV measurements

=0

hgurr 5. The apperatus: the current distribulion near one electrode and the velocity prolile

chematized. The H xrl nn layer depth is d' by é l Co p’v T [ l_l‘l lil-:\:'.nxln:s
fo jecl d ic polentia asarements.  (3) Elecirodes l clric p. izl
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FIG. 1. The experimental set-up.
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Laboratory experiments: soap film

Soap films
(Couder, Gharib, Derango, Goldburg, Kellay, Bruneau, Rutgers, ....)

A layer of um, in the plane eddies of size up to cm

->©,.) D) 7 Couder set up:
&= = Decay turbulence

Moving soap film

AR AR M. Gharib, and P. Derango,
Figure 2. Grid generated turbulence oblained by towing an array of cylinders through a sull PhYSica D37, 406 (1 989) .

horizontal soup lilm.

LDV visualization



Vertical soap film

PIV, LDV, interferometry
measurements

99% water
+ a detergent




Experimental steady double cascade

Vertical soap film, with vertical combs (1d grid)

1 central vertical comb
Or two vertical combs as A

Varying measurement position,
from forced to decay 2d turbulence

100

= B
5 10¢ el
g l =%y
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M. A. Rutgers, PRL 81, (1998) 0.0001

0.1 1 10
k/27(cm-)



DNS: historically

Reasonable resolutions DNS
started with N
Frisch & Sulem at 2562 , 4
(Phys. Fluids 27 (1984))
to get to Borue at 40962
(PRL 71 (1993))

Resolution N

1985 1930 1995 2000 2005
Year

Thanks to G. Boffetta
Standard numerical approach:
Pseudo-spectral methods, parallel computing

Ow+ (u-V)w=vV?%0w+V xf

Square box with periodic BC (unless role of boundaries is of interest)



High-resolution DNS (I)

2d NS + linear friction: Ow + (u-V)w = vVw — aw — Af

Simulations are designed so to:

(Boffetta, nlin.0612035)

) N v a Eiflileaferl enfer Na/ni| M /M0

¢ kee,P consTanf the ratio L/l 2048 2 x 107" 0.015 26.2 | 0.54 | 0.46 0.03 | 0.97
af increasing resol. N 4096 5x 10° 0.024 52.3 | 0.82| 0.18 0.08 | 0.92
* Keep constant friction scale at 8192 2x 107° 0.025 80.5| 0.92| 0.08 0.10 | 0.90
0.03 114.2| 0.95| 0.05 0.12 | 0.88

increasing €, =g, —¢€,: [, ~ (e,/a%)/? 16384 1 x 10~°

Energy inertial range
indip. of small scale
viscosity

o P
b U -~-—-‘,_;.'\‘?“:_\ Y i - p
& Ll \‘\‘\\‘ V. D R— ) L ———————————
= | P
w “ ni " ,75“1 ~ |
R 4 — A : .
10 10° 100 10*
k

20 7 N\ N >

TIz(k)
/
///
(

Enstrophy inertial range
increases, as expected, with N

\V 4

* Same forcing except DNS at larger N




High-resolution DNS (II)

1 ~ T
2t e Corrections to E(k) = k-3 spectrum
1 iy :
decrease with increasing N
@ qptt (to overcome finite size effects both a and v
%g should possibly go to zero)
ot
" ® Locally both fluxes are positive and
1 negative; independence of cascades
. (at the scales where they are maximal, very
o poorly correlated)
k
- : v ra 20
' 15
» 10
\I‘ - 15
: . 0 I‘I(Z)rz(x)
-5
- 1 -10
4 1-15
. L A A A £l ) 1 1 J -20
- -20-15-10 -5 0 5 10 15 20
i . » . . e H(e)r.(x)
Physical space Physical space

energy flux, r1=0.025L  enstrophy flux, r2=0.0025L



Summary

k
log k d

Kolmogorov '41

2D

Kraichnan '67




Part 2: energy inverse cascade

e Experimental & numerical results

e Discussion of main statistical properties :

absence of intermittency,; almost Gaussian statistics

Early studies:
. Frisch & Sulem, DNS 1984
. Sommeria, electrolyte solution 1986



Some observations

Thin electrolyte cell (L x L) : stationary state is assured by Hartman friction

Energy inertial range : l-<«<r<< |, <L

Paret & Tabeling, Phys Fluids 10, 1998

[ T v T T l T T T "_‘
[ . . 0..0.:\ (a) ‘:
10 b * fina Ttes —!'

°
ooooo°°
- °
- o -
o

x 1 ° N 3
- transient :
w o ”~ 3
% 3

N
> ° b |
0.1 2 ° ° -
UE initial . Ry ° )
N L 2 PO & \ 3
1 N 2 ]

k/2x (em™)

vorticity vorticity evolution
to the steady state

energy spectrum

e there are no vortices larger than the injection scale (from vortex size distrib.)
--> no vortices merging, very different from decaying 2d turbulence

e rather, aggregation in clusters of small-size equal sign vortices is the

transfer mechanism of energy to larger scales



What do we expect ?

From Kraichnan 1967,
+ DNS (Smith&Yakhot 1993-94) + EXP. (Pare’r&Tabeling 1998):

e Kolmogorov type spectra E(k)~ k -5/3
e energy dissipation vanishing for viscosity --> O;

no dissipative anomaly
® no intermittency corrections in velocity statistics

S (,r) _ <[5llu(,’,)]n> —c en/3’r’<” Paret & Tabeling, Phys Fluids 10, 1998
n - - n
5_"l"l"|"-rv,vv|..J 1 g
: j 0.1
4 S 0.01 f
" 3 . 0.001
=, ] < ).0001

10°
10
107 |
10 La

((6:u)?)




Questions

e Can we conclude that velocity statistics is (almost)
Gaussian in the inverse turbulent cascade?

e What about our understanding of non-linear terms
(associated to a constant flux) in NS egs.

and deviations from Gaussian statistics?

e Is the statistics universal (i.e. forcing independent) ?
in which sense?



DNS of inverse cascade

Boffetta, Celani, Vergassola PRE 61, 2000

Ouw +(u-V)w=vV%w —aw — Af

A convenient forcing is the following: Gaussian & white-in-time
(f(r,0)f(x',t)) = Folf exp[—(r — 1')*/(21F)] 6(t — t')

€in = Fo energy input

e Resolution is N?=2048% pseudo-spectral methods
e Statistics is over 80 snapshots (one each T))

® Friction scale | << L the box size
¢ inertial range << r << |,

e 2 different forcings to probe universality issues



Results for flux & spectrum

E(k)

2
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o ([u(x+r)+u(x)- 7 = €T

oE(k) = Ce?/3 |=5/3

6. -

— 0.4 Universal value

Deviations might appear at low K if different large scale frictions are used



High order statistics

Even and odd order longit. moments scale dimensionally: no intermittency

10% |
. n\ __ n/3
Sn(r) = ([Byu(r)]™) = cn(er)™/ o
10°
10-2 L
1”2 v < i o
1o°< .L>. so,,,,,( J 10° -TT '9'( \tT) o
10" } : 107 t : 109 102 10" 10°
102 10% r
10° | 10°
1ot | . 104 | | PDF long increments P(3,u(r)) &
10 10° \ PDF trasv increments P(d,u(r)) are almost
6 | 4 € L ’ .
10° 1 \ 0 1l Gaussian
6420246 6420246
8le<5v2L>"2 5v1-1<8v$>1’2
3
((u(r))*)

S =

(Gru(r)2 )32 —0.03 Skewness is small, Hyperskewness can be high



Departures from Gaussianity

To have a deeper insight, measure the antisymmetric PDF

pantisym= P(6||U(r)) - P(- 6||U(r))

0.0005 . — , ;
% o} ;’\‘
S -0.0005 B 1 : :
s 0001 I i |_Symmetric tail
’ . . .
® K ¢ 0 e | Antisymm. tail
S 00015 |4 | 10 o
S ooz}t ! 102 | 11
‘.§. £ z 10'4 s
S 00025} = {* N
—— 2" o 10 F R
g 0003 b % . |
v-A—J . ,%{ 10.8 ““““
0.0035 } % 1234567 .
2
.0‘004 L " i L "
0 1 2 3 4 5 &
dvi<dvi> 2

Asymmeftries, altough small, are not negligible for large fluctuations

Odd order statistics and antisymmetric PDF appear universal
Even high order stat. and symmetric PDF appear more forcing dependent



Summary

A 2d flow with energy injected at |- and removed at | << L
exhibits an inverse cascade of energy characterized as:

® an energy spectrum as predicted by Kraichnan

® no intermittency corrections to dimensional scaling
e universality holds but for some observables

e small but detectable deviations from Gaussian stat.

® closure theory results compatible with numerics
(Yakhot PRE 60, 1999)

Paret & Tabling, Phys Fluids 10, 1998
Boffetta, Celani, Vergassola PRE 61, 2000



What happens with small or no

large-scale friction ?

e No formation of structures at scales r> I
i if large-scale drag is properly parametrized

Vm

f{ 3.97€-03 |

e 3.71E-03

3.44E-03 |

3.18E-03

2.91E-03

2.65E-03

2.38E-03

212E-03

1.85E-03

1.59E-03 . .
}32582 Sukoriansky et al, Phys Fluids 11, 1999
7.95E-04

5.30E-04

2.65E-04

Vm

3.97E-03
s 3.71E-03
3.44E-03
3.18E-03
291E-03
265E-03
2.38E-03
2.12E-03
1.85E-03
1.59E-03
1.32E-03

o Otherwise, we have the formation
of structures at scales r> I,

1.06E-03
7.95E-04
5.30E-04
2.65E-04




Bose-Einstein condensation of energy

If the friction scale is larger than the size of the system |, > L

energy accumulates at the largest possible scale
(in the smallest possible mode k,=1/L )

(a)

vorticity
'\\ 800 %‘*ﬂl*ﬁiﬁ; “diPO|€”
P 400"7‘ . N
S \ OE.L& h,(‘r) N
0 1 2 3
5 ® FIPVNNS= N
X k;é\ﬁ«?ﬂh,’i,,.ff
-\\é\*“"l’I’//. .
} NTAN AN T ST velocity
- b ™ % S a oy s : >
o RN :;/;//44“" field
0 v o
k%? E(k) vs log k \.\\\j//l’ ‘\Xﬁ\«\ 3
¥ ™ \ * i
/‘é‘/‘“’::Q x NAN NS
. 27N\ N AN
e Strong deviations from E(k) = k-5/3 /éﬁ/ \ﬂ'ﬁ\\k 3
N
VY @z /% AT A
e Strong deviations from non intermittent stat. W NS AN

(Kraichnan 1967, Smith & Yakhot 1993, see also Borue 1994)



Part 3: enstrophy direct cascade

e Experimental & numerical results

e Vorticity & velocity
statistics

Early works:
Kraichnan 1967, Batchelor 1969




Recall basic features

Energy is exchanged between modes but there
is not a cascade: E-spectrum E(k) =~ k-3

Enstrophy Z = <w?> cascades at a constant rate C
from large to small scales (elongation of vorticity patches):
Z-spectrum Z(k) =~ k-

Eddies are not organized hierarchically in time:
at any scale r, we have the same eddy turn-over-time

T~1/ < Wpms >



Early observations (mainly numerics)

First observations report deviations from the spectrum predicted
by theory: E(K) = k-3

Steeper spectra (k-*with 3< a < 5) associate with the presence
of strong large scale vortices, depending on forcing type.

Decaying turbulence shows long term memory of initial conditions

(see McWilliams 1984) NO UNIVERSALITY
long lived vertices e o 1 1 ~._spectrum as a superposition of
N (o W\ ’ > s \1: 10‘;

individual structures

‘/ X g \ 7~ {5 : | ‘ |
\ I@ \ " \ £ 9 o | -

5 \ LR :
| . g\ J
b £ ) E(k) =k
134-1
10> . . .
1 10 10? 10°

Wavenumber

Benzi, Paternello, Santangelo J. Phys. A, 21 (1988)



VIDEO

Thanks to S. Espa
Europhys. Lett. 71 (2005)



More recently

Recent simulations of forced 2d direct cascade are more in agreement

with Kraichnan prediction

E(k) = k-3

(+ logarithmic corrections)

V. Borue, PRL 71, (1993); S.Chen, R. Ecke, G. Eyink, X. Wang, Z. Xiao, PRL 91, (2003)
C.Pasquero, G.Falkovich, PRE 65 (2002); E.Lindborg, K.Alvelius, Phys. Fluids 12 (2000)

This is always achieved if coherent structures are removed!

Ow + (u-V)w =

0.1

Z(k)/m

0.01

0.001 -

(_1)pa+1 o v—2paw

L |

-3 -1/3
. K7In(ik,)]

3
1l ol sed e e ot s sl o sl s sl s d

1000

1000

+uvVew+ F




Experimental direct cascade

NaCl solution stratified in density
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Vorticity statistics in the direct cascade

e Vorticity statistics is non intermittent, in agreement with theoretical
predictions (Kraichnan - Batchelor, Falkovich & Lebedev 1994)

Sp(r) = ([w(r +ro —w(ro)|") = r°F(lp/Ir|)

- 1
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Velocity statistics in the direct cascade

From the energy spectrum:

E(k) ~ k= 3In"2/3(k/kF)

-> velocity field is smooth, du(r) = ¢, r + ¢, r" with h>l,
this behaviour dominates standard structure functions at r<«l.:

Sp(r) = (lu(r +ro —u(ro) - ) ~ ¢, 7

Intermittency can possibly appear only in the scaling behaviour
of the more-than-smooth fluctuations r" with h>l
--> inverse structure functions

S(X) &

Biferale, Cencini, Lanotte,
Vergni, Vulpiani PRL 87 (2001)

>
>
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Part 4: an application of
geophysical interest

El " ,/""'"6 LQ VortexA.MOV
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]
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2

e Predictability properties
in the inverse energy
cascade

Boffetta & Musacchio Phys. Fluids 13, (2001)

Early studies:
Leith 1971
Leith & Kraichnan, 1972



Predictability Problem

We deal with a generic dynamical system, knowing its evolution law and
present status:

(

dr
< dt Fla) Example:
z(to) = x4 weather forecasting

-

We want to know a future state, and the error associated.
In particular given a tolerance threshold § , about the future state:

Predictability time T, is tThe maximum value

at which one can forecast the system
with a tolerance o,




Dynamical Systems Tools

In chaotic dynamical systems (as well as in NS turbulence),
two initially close states of the system can diverge:

zo, x(t) = F(x, xq)

z1 =0+ 0, 2(t) = F(z,z1) 5(0) I/\

9(t)| =~ |6(0)]e™

5(t)

Infinitesimal perturbations qrow exponentially with the maximum

Lyapunov exponent: Y= lim lim l In @
~ t—ooos(0)—0t  6(0)

Given tolerance A for the future state, and 5(0) as the initial error

A
In—-— ~

1
A76(0)

e weak depend. on A,0
e average time of system

I'p

> =




However....

In usual applications:
e f can be finite (can not take limit + --> o)
or perturbation d might be finite (not infinitesimal)

e perturbation 8 can be on some degrees of freedom (e.g. small scales),
while we want to predict status of other degrees of freedom

(e.g. large scales)

e details of the non-linear dynamics can be relevant
(T, independent of 4, but depends on A,d)

We need a better estimate!



Finite Size Lyapunov Exponent (FSLE)

o(t) :
We define a series of thresholds 0,=r"0,, and
S, we measure the time T (8) such that d(t+ T )= r 8(1)
o |/
1
A= —— Inr FSLE
T )= 70
This represents the error growth rate at scale 6
Linear limit (small perturbation) Time of error growl’rh at scale &
— |5 T'r 5 =
A= lim A(9) )= 36)

Crisanti, Jensen, Paladin, Vulpiani PRL 70 (1993)

FSLE APPLICATIONS:
Predictability problems; Relative dispersion of Lagrangian particles;
Experimental data analysis: laboratory experiments, ocean drifters;....



Predictability Problem in Turbulence

In the inverse cascade the initial infinitesimal error at scale
ke(t=0) gets to larger and larger scales

2Ep(K)
3

*¢

how does the error spectrum grows when the error is at wavenumber
in the inertial range?



How can we model this?

Transfer time at scale k = t(k) local turn-over time

From Kolmogorov scaling: -->the scale attained by the error at time t:

{E(k) ~ 62/31{;_5/;)’ —> kE(t) -~ 6_1/2t_3/2
7(k) ~ e Y323

The error spectrum is:

R

EA(t) = / Ea(k,t)dk = Get
J0

Local error grows algebraically (not exponentially)
Global error energy grows diffusively =4.19
Large scale predict. independent of Lyapunov Kraichnan, Leith 1972




DNS of inverse cascade

u-field perturbed u’

We consider a field u(x,t) and a slightly perturbed
field at small scales u'(x,1) :

3(x,0)=| u(x,0) - u'(x,0)| << 1

and we integrate their dynamics numerically (usual set up)

At later times, we want fo estimate:

5(x,t) = [u(x, t) — u'(x,1)]



Predictability in 2d inverse cascade

Given the error of amiplitude:

5(x,t) = [u(x, t) — u'(x,1)]

If error amplitude smaller than If error amplitude are fluctuations of
fluctuations at the forcing scale the inertial range: du(n) <d <du(L) :
d < du(m):
A(0) = A~ 7'_1(77) A6) = 771 (6u(l) = 6) ~ €}/3172/3 ~ 572
A infinitesimal
)\(5) — Aed —2inertial range
0 saturation at large scale

FSLE for turbulence



Results from DNS of 2d inverse cascade

Self-similar growth of error Average error energy growth
-3
10 ' 100 [ A
,/
104 | 10 - e 0.006 7
\'-_ <EA >= th ////
5 | 1 Lo e d | o
10 10 100 A 0004 | /10
e~ 7 4 |
10 | 1 v 7
4 6 |
0.002 | ' 10 ,
107 f 1 7 10° |
| / 0 2 4 6 8 10
108 : : ol
10 100 K 0O 5 10 15 20 25 30 35 40 45 50
Kk - , t
10 Finite Size Lyapunov Exponent
G=4.1+0.1
ALl g fosn S50 (8)=A £ 572 1 Chaotic dynamics creates
uncorrelated energy 4 times
s 01l g S | A=3.9 faster than energy transfer
< : T T '4._.&
N ~ G is in very good agreement
2 | : J . . . .
10 ‘ : : with theoretical predictions
0.1 pper 01 of Kraichnan & Leith with
1072 : A - Test Field Model
107 102 0.1

o Boffetta & Musacchio Phys. Fluids 13, (2001)



Predictability Time

For error amplitude in the inertial range: A(0) =A g 62

We can calculate the predictability time associated to a maximum
tolerance A:

A
ds 1 1
T — = T (A6~ — A2
p 5o ON(0) er( 0) 2 A€

In terms of the error spectrum, by dimensional analysis

2 3/2 3C3/2
AT =287 =307 er m T, (A) = ——k = 5.67

Predictability time for an error at scale k

Example:
In the stratosphere L=500km, t(L)=1 day : T,=6 days




Final part

e Uncovered and/or open issues
e New approaches to 2d
turbulence




A brief tour in the “untold”

Some of the uncovered issues:

11

* Direct cascade with linear friction “-a »”
(analogy with passive scalar transport at small scales)

(remember Massimo Cencini talk)

* Coherent structures in an un-coherent background

* Wavelet approaches to 2d turbulence

Farge, Ann. Rev Fluid Mech 24 (1992)



Some of the uncovered issues:

e Statistical mechanical theories (equilibrium, conservative) for
2d turbulent flows

» Decaying 2d turbulence : (much different from steady case)
from Batchelor’s self-similar theory to more recent observations

10 ¢ Cee, |
F N=Number density
oo® omﬂm% r . .
. o © o0 5000 r=intervotex distance
1;—......'...000000000”7a a=size

- " " " 4 " Pa—

2 3 4 5 6 78810
t [s]



A brief tour in the unknown (I1I)

Some of the open issues:

A well established theory for decaying 2d turbulence

Theoretical understanding of the direct cascade energy spectrum
shape

Universality issues?

Satisfactory description of coherent structures, of their role, and
link to statistical theories

|sotropy restoration in 2d flows?
A Lagrangian understanding of 2d turbulence:

 patrtial for direct cascade
» absent for inverse cascade



Conformal invariance in 2d inverse cascade

www.ph.mg.ithhm,

oo
Statistical mechanics of two-dimensional turbulenge
Zero-varticity isoline are conformally invariant random curves

They are compatible with SLE,

Beyond geometry: conformal invariance for correlation functions ?
What about other 2D turbulent systems ?




Conformal invariant observables

Vorticity clusters characterized
with fractal dimensions as
in critical system

length

This result is no longer frue
if phases are randomized !

diameter L
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Thanks for your attention



