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Previous work

Different identification criteria for structures in turbulence exist.
Two main groups:

I based on the velocity gradient tensor and related quantities:
I Λ (Chong),
I Q (Hunt),
I λ2 (Jeong and Hussain),
I λ+,−(Horiuti).

I based on the pressure field: sectionally minimal pressure
(Kida).

Usually, two main types of structures considered: tubes and sheets.

Most of these methods are local (point-wise criteria).

Multi-scale analysis previously used in turbulence (e.g. Coherent
Vortex Simulation, developed by Farge and Schneider).
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Extraction

Purpose: educe structures associated to different ranges of scales.

Ranges of scales generally
defined in Fourier space.

But Fourier-basis functions are
not localized in physical space.

⇒ Top-hat window filtering
inappropriate.

Use curvelet transform (Càndes
et al.).
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Curvelet transform

ω1 ω2

(1, α`, β`)

ω3

Curvelets are localized in scale (Fourier space), position (physical
space) and orientation (unlike wavelets).

In Fourier space, they are defined by:

ϕ̂D
j ,l ,k(ω) ≡ W̃j(ω) Ṽj ,`(ω) exp

−2πi
∑3

i=1
kiωi
Li,j,`√

Π3
i=1Li ,j ,`


Radial and angular frequency windows satisfy:

∑
j≥j0

W̃ 2
j (ω) = 1,

∞∑
`=−∞

Ṽ 2(t−2`) = 1

j scale, ` orientation
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Curvelet transform

Properties

I Curvelets form a tight-frame in L2
(
R3
)
.

Any function f ∈ L2
(
R3
)

can be expanded in a series of
curvelets

f =
∑
j ,`,k

〈φj ,`,k , f 〉φj ,`,k

being φj ,`,k the curvelet at scale j , orientation ` and position
k = (k1, k2, k3).
Parseval’s identity holds:

∑
j ,`,k ‖〈f , φj ,`,k〉‖2 = ‖f ‖2

L2(R3)

I Parabolic scaling : in physical space width≈length2

I Curvelets are an optimal (sparse) basis for representing
surface-like singularities of codimension one.
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Iso-contouring

After the multi-scale decomposition, a set of fields associated to
each range of scales results.

Iso-contours of each field corresponding to equivalent contour
values (e.g. mean plus certain times the r.m.s.) are educed.
Periodic reconnection: structures intersecting periodic boundaries
are reconnected to their continuation on the opposite boundary.

→
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Characterization

Purpose: geometrically characterize structures based on their
global shape.

A two-step method is used:

1. A suitable set of differential geometry properties is locally
obtained.

2. Area-based probability density functions of those local
properties are calculated (transition from local to global, in
the surface sense).
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Differential geometry properties

Shape index, Υ, and curvedness, Λ, (Koenderink) are the
differential geometry properties chosen to represent locally the
geometry of the surface.

They are related to the principal
curvatures κ1, κ2 by:

Υ ≡ − 2

π
arctan

(
κ1 + κ2

κ1 − κ2

)

Λ ≡
√

κ2
1 + κ2

2

2

Shape index is dimensionless.
Curvedness is dimensional (L−1).
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κ1 + κ2κ2

κ1

κ1 − κ2
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√

2Λ

φ = −π
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Shape Index

I Its absolute value S ≡ |Υ| represents the local shape of the
surface at the point P, with 0 ≤ S ≤ 1.

I Its sign indicates the direction of the normal, distinguishing,
for example, convex from concave elliptical points.
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Curvedness and stretching parameter

A nondimensionalization of Λ is
required to compare the global shape of
surfaces of different sizes:

C ≡ µΛ, µ ≡ 3 V

A
.

V ≡ Volumeb, A ≡ Area

Stretching parameter (global)

λ ≡ 3
√

36π
V 2/3

A

Example: Csphere = λsphere = 1

bVolume implies closed surface
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Signature of a structure

The area-based joint pdf P(S ,C ) † represents how the local shape,
S , is distributed across the different (relative) scales, C .

0 0.5

S

0.25 0.75

1.12

1.14

1.10

1.08

1.06

C

1

From P(S ,C ),
marginal pdfs,
PS(S), PC(C ) can
be obtained.

{P(S ,C ),PS(S),PC(C ), λ} comprise the signature of a structure.

†R R
P(S , C) dSdC = 1
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Classification

Purpose: assign structures to different groups, based on their
signatures.

Learning-based clustering techniques are used.

Properties:

I Locally-scaled

I Spectral

I K-means based

I Automatic determination of optimum number of clusters
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Clustering algorithm

1. Start from N elements E = {e1, . . . , eN} and their signatures.

2. Construct the distance matrix : (in the feature space of
parameters): dij = d(ei , ej), ei , ej ∈ E .

3. Construct a locally scaled affinity matrix Â ∈ RN×N :

Âij = exp

(
−

d2
ij

σiσj

)
(1)

where σl is a local scaling parameter (Zelnik) (distance of
element ei to its R-th closest neighbor).

4. Normalize Â with Dii =
∑N

j=1 Âij obtaining the normalized

locally scaled affinity matrix L = D−1/2AD−1/2

I. Bermejo-Moreno and D. I. Pullin On the non-local geometry of turbulence



Introduction
Methodology

Application
Conclusions

Extraction
Characterization
Classification

Clustering algorithm

1. Start from N elements E = {e1, . . . , eN} and their signatures.

2. Construct the distance matrix : (in the feature space of
parameters): dij = d(ei , ej), ei , ej ∈ E .

3. Construct a locally scaled affinity matrix Â ∈ RN×N :

Âij = exp

(
−

d2
ij

σiσj

)
(1)

where σl is a local scaling parameter (Zelnik) (distance of
element ei to its R-th closest neighbor).

4. Normalize Â with Dii =
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Âij = exp

(
−

d2
ij

σiσj

)
(1)

where σl is a local scaling parameter (Zelnik) (distance of
element ei to its R-th closest neighbor).

4. Normalize Â with Dii =
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Clustering algorithm

5. For NC=min,max number of clusters:

(i) Find the NC largest eigenvectors x1, . . . , xNC
of L and form the

matrix X = [x1, . . . , xNC
] ∈ RN×NC .

(ii) Re-normalize the rows of X so that they have unitary length,

obtaining the matrix Y ∈ RN×NC as Yij = Xij/
(∑

j X 2
ij

)1/2

(iii) Treat each row of Y as a point in RNC and cluster them into
NC clusters via K-means algorithm.

(iv) Assign the original element ei to cluster k iff row i of Y was
assigned to cluster k in the previous step.

(v) Obtain optimality score, for this number of clusters NC , based
on the silhouette coefficient(Rousseeuw), a confidence
indicator on the membership of an element to the cluster it
was assigned.

6. Determine the optimum number of clusters minimizing the
optimality score.
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was assigned.
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optimality score.
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Feature space of parameters

Consists of seven parameters:

I {Ŝ , Ĉ},feature center of P(S ,C ).

I λ, stretching parameter.

I {dS
l , dS

u , dC
l , dC

u }, feature lower/upper distances of P(S ,C ).

Distance matrix is obtained as the Euclidean distance of points in
this feature space of parameters.
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Feature space of parameters

The feature center, x̂ , of a pdf, f (x), is defined as:

x̂ ≡


x̄ − dl

√
1−

(
dl
du

)2
if dl < du

x̄ + du

√
1−

(
du
dl

)2
if dl > du

where x̄ is the mean or expected value of X , x̄ ≡
∫

xfdx .
The lower and upper distances dl , du, are defined by:

dl ≡

√√√√∫x≤x̄ (x̄ − x)2 fdx∫
x≤x̄ fdx

, du ≡

√√√√∫x≥x̄ (x̄ − x)2 fdx∫
x≥x̄ fdx

The feature center accounts for the asymmetry of f (x),
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Feature space of parameters

Example: f (x) = x2 exp
(
−
√

x
)
/
∫∞
0 ξ2 exp

(
−
√

ξ
)
dξ
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dl du
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Visualization space

Based on the feature space, it is intended to provide a graphical
representation of the distribution of individual structures.

The utilization of glyphs, scaling and coloring allows more than
three dimensions to be represented in the visualization space.

Ĉ

λ

0.5

1001λ Ŝ0.5
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Application to virtual world of structures

Applies the characterization and classification steps to a set of
nearly 200 modeled structures of different sizes and shapes.

Three main groups are automatically educed (blob, tube,
sheet-like) assigning each element to the correct group.
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Numerical data base (O’Gorman)

I DNS with 5123 grid points in a periodic cube 2π3.

I The incompressible Navier-Stokes equations for the velocity
field and the advection-diffusion equation for the passive
scalar solved by Fourier-Galerkin pseudo-spectral method.

I Velocity field forced at large scales, becoming statistically
stationary in time.

I Mean scalar gradient imposed so that the scalar fluctuation
field became also statistically stationary in time.

I Scalar fluctuation statistically homogeneous.
I Reynolds number based on the integral length scale is 1901.
I Taylor Reynolds number is ReT = 265.
I Schmidt number of the simulation is 0.7.
I kmaxη = 1.05.
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Multiscale diagnosis

5123 points ⇒ 7 scales available in curvelet domain:

6543

210All

Plane cuts of cube faces

I. Bermejo-Moreno and D. I. Pullin On the non-local geometry of turbulence



Introduction
Methodology

Application
Conclusions

Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Multiscale diagnosis

5123 points ⇒ 7 scales available in curvelet domain:

Plane cuts normal to z axis.
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Multiscale diagnosis

5123 points ⇒ 7 scales available in curvelet domain:
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Multiscale diagnosis

An equivalent decomposition is done for the velocity field.

Define characteristic squared integral velocities, u2
i , and integral

length scales, Li and L′i , for each scale i as:

u2
i =

2

3

∫ ∞

0
Ei (k)dk, Li =

π

2u2

∫ ∞

0

Ei (k)

k
dk, L′i =

π

2u2
i

∫ ∞

0

Ei (k)

k
dk

where Ei (k) is the energy spectrum associated to scale i

From the properties of the filtering in curvelet domain:

E (k) =
∑

i

Ei (k), u2 =
∑

i

u2
i
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Multiscale diagnosis

An equivalent decomposition is done for the velocity field.

scale u2
i /u2 Li/η † L′i/η

original 1.000 249.6 249.6
0 0.591 226.9 383.8
1 0.155 14.68 96.1
2 0.113 5.235 46.2
3 0.085 1.927 22.8
4 0.044 0.519 11.9
5 0.011 0.070 6.3
6 0.001 0.004 3.3

†η ≡ Kolmogorov length-scale
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Iso-contours
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Iso-contours of original field and filtered scales.
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Test case
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Turbulence numerical data base - vorticity square

Iso-contours

Iso-contours filtered scale 2.
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Test case
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Turbulence numerical data base - vorticity square

Iso-contours

Iso-contours filtered scale 3.
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Iso-contours

Iso-contours filtered scale 4.
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Iso-contours

Iso-contours filtered scale 5.
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - Visualization space

Individual structures corresponding to scales 1-5 are characterized.

Scales 0 (largest) and 6 (smallest) are not included:
I scale 0 ⇒ dependent on the boundary conditions.
I scale 6 ⇒ ignored to avoid lack of spatial resolution and

aliasing effects.

First, individual structures are represented in a visualization space
by spheres with:

I center = {Ŝ , Ĉ , λ}.
I color ⇒ filtered scale number in curvelet space.
I radius = area of the surface, in a log-normalized scale.
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Individual structures - Visualization space
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - Visualization space
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Ŝ

Ĉ

Representative points:
I A,B,C → blob-like.

I D,E ,F → transition to tube-like with low/moderate stretching.
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - Visualization space
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - Visualization space
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Representative points:
I H, I ,K , L → tube-like with increasing stretching/complexity.

I J,M → patches with smaller curvedness.
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - Visualization space
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - Visualization space
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Representative points:
I N,O,P → lower curvedness with increasing stretching/complexity.

I Q,R,S → decreasing curvedness → sheet-like.
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - Visualization space
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - Visualization space
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Representative points:
I T − Z → sheet-like.
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - Visualization space
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Classification via clustering

The feature space of parameters used for clustering includes
{Ŝ , Ĉ , λ, dS

u , dS
l , dC

u , dC
l }

The clustering results are represented in a visualization space,
where each sphere represents a structure.

I center = {Ŝ , Ĉ , λ}.
I color ⇒ cluster ID.

I radius ⇒ silhouette coefficient, SC , (degree of membership to
the assigned cluster).

I bars ⇒ dS
l , dS

u , dC
l , dC

u , scaled by SC .
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Classification via clustering
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Glyphs (sphere+bars):

I center = {Ŝ , Ĉ , λ}.
I color ⇒ cluster ID.

I radius ⇒ SC .

I bars ⇒ dS
l , dS

u , dC
l , dC

u .
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Numerical data base (Horiuti)

I DNS with 2563, 5123 and 10243† grid points in a periodic
cube.

I Homogeneous isotropic turbulence.

I Taylor Reynolds numbers: ReT = 77.2, 76.87, 77.43.

I kmaxη = 1.02, 2.05, 4.09.

I Same initial conditions in the three cases.

I Purpose: Study effect of increasing resolution on the
geometry of structures.

I Scalar field of study: square of the vorticity.

†10243 case currently under analysis. Only results for 2563 and 5123 shown.
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Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Plane cut comparison - 2563 vs 5123 vs 10243

2563
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10243
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Plane cut comparison - 2563 vs 5123 vs 10243

2563 zoom
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Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Plane cut comparison - 2563 vs 5123 vs 10243

5123 zoom
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Plane cut comparison - 2563 vs 5123 vs 10243

10243 zoom
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Multiscale diagnosis

2563 points ⇒ 6 scales available in curvelet domain:
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5123 points ⇒ 7 scales available in curvelet domain:
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Isocontours - 2563 vs 5123
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Isocontours - 2563 vs 5123
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Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Isocontours - 2563 vs 5123
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Isocontours - 2563 vs 5123

scale 4

2563 5123
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Isocontours - 2563 vs 5123

scale 5

2563 (tube-like still predominant) 5123 (more sheet-like)
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Isocontours - 2563 vs 5123
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Isocontours - 5123 - zoom scales 4 and 5

scale 4

zoom
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Isocontours - 5123 - zoom scales 4 and 5
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - visualization space - 2563 vs 5123

2563 - scales 1-4 5123 - scales 1-5
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - visualization space - 2563 vs 5123

2563 - scales 1 5123 - scales 1
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - visualization space - 2563 vs 5123

2563 - scale 2 5123 - scale 2
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - visualization space - 2563 vs 5123

2563 - scale 3 5123 - scale 3
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - visualization space - 2563 vs 5123

2563 - scale 4 5123 - scale 4
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - visualization space - 2563 vs 5123

5123 - scale 5
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - rolling geometry - scale 5 - 5123
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - rolling geometry - scale 5 - 5123
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Test case
Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - rolling geometry - scale 5 - 5123
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Turbulence numerical data base - passive scalar fluctuation
Turbulence numerical data base - vorticity square

Individual structures - rolling geometry - scale 5 - 5123
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Conclusions

New methodology for the identification of structures in turbulence:

I multi-scale, non-local, geometry-based

I three main steps: extraction, characterization, classification

Application to passive scalar fluctuation field (5123):

I smaller scales present narrower volume pdfs (overlapping in
the inertial range)

I geometry of individual structures evolves from blob/tube-like
with low to moderate stretching in the inertial range towards
tube/sheet-like with high stretching in the dissipation range.

I smooth transition of geometry → difficult clustering (not
clearly distinct groups → other clustering techniques can be
applied: density-based, fuzzy c-means)
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Conclusions

New methodology for the identification of structures in turbulence:

I multi-scale, non-local, geometry-based.

I three main steps: extraction, characterization, classification.

Application to vorticity square field (2563, 5123):

I 2563, kmaxη ≈ 1 ⇒ blob to tube-like structures for smaller
scales.

I 5123, kmaxη ≈ 2 ⇒ blob to tube to sheet-like structures for
smaller scales.

I increasing resolution shows, for the same Reynolds number,
the appearance of sheet structures with rolling geometry at
the smallest scales.

I. Bermejo-Moreno and D. I. Pullin On the non-local geometry of turbulence



Introduction
Methodology

Application
Conclusions

I. Bermejo-Moreno and D. I. Pullin On the non-local geometry of turbulence


	Introduction
	Methodology
	Extraction
	Characterization
	Classification

	Application
	Test case
	Turbulence numerical data base - passive scalar fluctuation
	Turbulence numerical data base - vorticity square

	Conclusions

