On the non-local geometry of turbulence

I. Bermejo-Moreno and D. I. Pullin

Small-scale turbulence; Theory, phenomenology and Applications

Cargèse, August 13-25, 2007

(中) (종) (종) (종) (종) (종)

Introduction

Methodology Extraction Characterization Classification

Application

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Conclusions

回 と く ヨ と く ヨ と

Introduction

Methodology Extraction Characterizatior Classification

Application

Test case

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Conclusions

- 4 回 2 - 4 □ 2 - 4 □

Previous work

Different identification criteria for structures in turbulence exist.

- Two main groups:
 - based on the velocity gradient tensor and related quantities:
 - Λ (Chong),
 - ► *Q* (Hunt),
 - λ_2 (Jeong and Hussain),
 - $\lambda_{+,-}$ (Horiuti).
 - based on the pressure field: sectionally minimal pressure (Kida).

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Previous work

Different identification criteria for structures in turbulence exist.

Two main groups:

- based on the velocity gradient tensor and related quantities:
 - Λ (Chong),
 - ► *Q* (Hunt),
 - λ_2 (Jeong and Hussain),
 - $\lambda_{+,-}$ (Horiuti).
- based on the pressure field: sectionally minimal pressure (Kida).

Usually, two main types of structures considered: tubes and sheets.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Previous work

Different identification criteria for structures in turbulence exist. τ

Two main groups:

- based on the velocity gradient tensor and related quantities:
 - Λ (Chong),
 - ► *Q* (Hunt),
 - λ_2 (Jeong and Hussain),
 - $\lambda_{+,-}$ (Horiuti).
- based on the pressure field: sectionally minimal pressure (Kida).

Usually, two main types of structures considered: tubes and sheets.

Most of these methods are local (point-wise criteria).

・ 同・ ・ ヨ・ ・ ヨ・

Previous work

Different identification criteria for structures in turbulence exist.

Two main groups:

- based on the velocity gradient tensor and related quantities:
 - Λ (Chong),
 - ► *Q* (Hunt),
 - λ_2 (Jeong and Hussain),
 - $\lambda_{+,-}$ (Horiuti).
- based on the pressure field: sectionally minimal pressure (Kida).

Usually, two main types of structures considered: tubes and sheets.

Most of these methods are local (point-wise criteria).

Multi-scale analysis previously used in turbulence (e.g. Coherent Vortex Simulation, developed by Farge and Schneider).

Extraction Characterization Classification

Introduction

Methodology Extraction Characterization Classification

Application

Test case

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Conclusions

イロト イヨト イヨト イヨト

Extraction Characterization Classification

Introduction

Methodology Extraction Characteriza

Classification

Application

- Test case
- Turbulence numerical data base passive scalar fluctuation Turbulence numerical data base - vorticity square

Conclusions

イロト イヨト イヨト イヨト

Extraction Characterization Classification

Extraction

Purpose: educe structures associated to different ranges of scales.

・ロト ・回ト ・ヨト ・ヨト

Extraction Characterization Classification

Extraction

Purpose: educe structures associated to different ranges of scales.

Ranges of scales generally defined in Fourier space.

イロト イヨト イヨト イヨト

Extraction Characterization Classification

Extraction

Purpose: educe structures associated to different ranges of scales.

Ranges of scales generally defined in Fourier space.

But Fourier-basis functions are not localized in physical space.

- 4 同 ト 4 臣 ト 4 臣 ト

Extraction Characterization Classification

Extraction

Purpose: educe structures associated to different ranges of scales.

Ranges of scales generally defined in Fourier space.

But Fourier-basis functions are not localized in physical space.

 \Rightarrow Top-hat window filtering inappropriate.

| 4 回 2 4 U = 2 4 U =

Extraction Characterization Classification

Extraction

Purpose: educe structures associated to different ranges of scales.

Ranges of scales generally defined in Fourier space.

But Fourier-basis functions are not localized in physical space.

 \Rightarrow Top-hat window filtering inappropriate.

Use **curvelet transform** (Càndes et al.).

(本間) (本語) (本語)

Extraction Characterization Classification

Curvelet transform

Curvelets are localized in scale (Fourier space), position (physical space) and orientation (unlike wavelets).

イロト イヨト イヨト イヨト

Extraction Characterization Classification

Curvelet transform

Curvelets are localized in scale (Fourier space), position (physical space) and orientation (unlike wavelets). In Fourier space, they are defined by:

$$\hat{\varphi}_{j,l,k}^{D}(\omega) \equiv \tilde{W}_{j}(\omega) \tilde{V}_{j,\ell}(\omega) \exp\left(\frac{-2\pi i \sum_{i=1}^{3} \frac{k_{i}\omega_{i}}{L_{i,j,\ell}}}{\sqrt{\prod_{i=1}^{3} L_{i,j,\ell}}}\right)$$

イロト イヨト イヨト イヨト

Extraction Characterization Classification

Curvelet transform

.

Curvelets are localized in scale (Fourier space), position (physical space) and orientation (unlike wavelets). In Fourier space, they are defined by:

$$\hat{\varphi}_{j,l,k}^{D}(\omega) \equiv \tilde{W}_{j}(\omega) \tilde{V}_{j,\ell}(\omega) \exp\left(\frac{-2\pi i \sum_{i=1}^{3} \frac{k_{i}\omega_{i}}{L_{i,j,\ell}}}{\sqrt{\prod_{i=1}^{3} L_{i,j,\ell}}}\right)$$
Radial and angular frequency windows satisfy:

$$\sum_{i \ge j_{0}} \tilde{W}_{j}^{2}(\omega) = 1, \sum_{\ell=-\infty}^{\infty} \tilde{V}^{2}(t-2\ell) = 1$$
is cale, ℓ orientation

Extraction Characterization Classification

Curvelet transform

Properties

I. Bermejo-Moreno and D. I. Pullin On the non-local geometry of turbulence

<ロ> <回> <回> <回> < 回> < 回> < 回> <</p>

æ

Extraction Characterization Classification

Curvelet transform

Properties

• Curvelets form a tight-frame in $L^{2}(\mathbb{R}^{3})$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Extraction Characterization Classification

Curvelet transform

Properties

 Curvelets form a tight-frame in L² (ℝ³). Any function f ∈ L² (ℝ³) can be expanded in a series of curvelets

$$f = \sum_{j,\ell,k} \langle \phi_{j,\ell,k}, f \rangle \phi_{j,\ell,k}$$

being $\phi_{j,\ell,k}$ the curvelet at scale j, orientation ℓ and position $k = (k_1, k_2, k_3)$. Parseval's identity holds: $\sum_{i,\ell,k} \|\langle f, \phi_{j,\ell,k} \rangle\|^2 = \|f\|_{L^2(\mathbb{R}^3)}^2$

・ロン ・回 と ・ ヨ と ・ ヨ と …

Extraction Characterization Classification

Curvelet transform

Properties

 Curvelets form a tight-frame in L² (ℝ³). Any function f ∈ L² (ℝ³) can be expanded in a series of curvelets

$$f = \sum_{j,\ell,k} \langle \phi_{j,\ell,k}, f \rangle \phi_{j,\ell,k}$$

being $\phi_{j,\ell,k}$ the curvelet at scale j, orientation ℓ and position $k = (k_1, k_2, k_3)$. Parseval's identity holds: $\sum_{i,\ell,k} \|\langle f, \phi_{j,\ell,k} \rangle\|^2 = \|f\|_{L^2(\mathbb{R}^3)}^2$

► Parabolic scaling: in physical space width≈length²

・ロン ・回 と ・ ヨ と ・ ヨ と

Extraction Characterization Classification

Curvelet transform

Properties

 Curvelets form a tight-frame in L² (ℝ³). Any function f ∈ L² (ℝ³) can be expanded in a series of curvelets

$$f = \sum_{j,\ell,k} \langle \phi_{j,\ell,k}, f \rangle \phi_{j,\ell,k}$$

being $\phi_{j,\ell,k}$ the curvelet at scale *j*, orientation ℓ and position $k = (k_1, k_2, k_3)$.

Parseval's identity holds: $\sum_{j,\ell,k} \|\langle f, \phi_{j,\ell,k} \rangle\|^2 = \|f\|_{L^2(\mathbb{R}^3)}^2$

- ► Parabolic scaling: in physical space width≈length²
- Curvelets are an optimal (sparse) basis for representing surface-like singularities of codimension one.

イロト イポト イヨト イヨト

Extraction Characterization Classification

lso-contouring

After the multi-scale decomposition, a set of fields associated to each range of scales results.

・ロン ・回 と ・ ヨ と ・ ヨ と

Extraction Characterization Classification

lso-contouring

After the multi-scale decomposition, a set of fields associated to each range of scales results.

Iso-contours of each field corresponding to equivalent contour values (e.g. mean plus certain times the r.m.s.) are educed.

Extraction Characterization Classification

lso-contouring

After the multi-scale decomposition, a set of fields associated to each range of scales results.

Iso-contours of each field corresponding to equivalent contour values (e.g. mean plus certain times the r.m.s.) are educed. **Periodic reconnection**: structures intersecting periodic boundaries are reconnected to their continuation on the opposite boundary.

Extraction Characterization Classification

Introduction

Methodology Extraction Characterization Classification

Application

Test case

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Conclusions

イロト イヨト イヨト イヨト

Extraction Characterization Classification

Characterization

Purpose: geometrically characterize structures based on their global shape.

・ロン ・回 と ・ ヨ と ・ ヨ と …

Extraction Characterization Classification

Characterization

Purpose: geometrically characterize structures based on their global shape.

A two-step method is used:

・ロン ・回 と ・ ヨ と ・ ヨ と …

Extraction Characterization Classification

Characterization

Purpose: geometrically characterize structures based on their global shape.

- A two-step method is used:
 - 1. A suitable set of differential geometry properties is locally obtained.

- 4 回 2 - 4 □ 2 - 4 □

Extraction Characterization Classification

Characterization

Purpose: geometrically characterize structures based on their global shape.

- A two-step method is used:
 - 1. A suitable set of differential geometry properties is locally obtained.
 - 2. Area-based probability density functions of those local properties are calculated (transition from local to global, in the surface sense).

・ 同 ト ・ ヨ ト ・ ヨ ト

Extraction Characterization Classification

Differential geometry properties

Shape index, Υ , and curvedness, Λ , (Koenderink) are the differential geometry properties chosen to represent locally the geometry of the surface.

イロト イヨト イヨト イヨト

3

Extraction Characterization Classification

Differential geometry properties

Shape index, Υ , and curvedness, Λ , (Koenderink) are the differential geometry properties chosen to represent locally the geometry of the surface.

They are related to the *principal* curvatures κ_1, κ_2 by:

$$\begin{split} \Upsilon &\equiv -\frac{2}{\pi} \arctan\left(\frac{\kappa_1 + \kappa_2}{\kappa_1 - \kappa_2}\right) \\ \Lambda &\equiv \sqrt{\frac{\kappa_1^2 + \kappa_2^2}{2}} \end{split}$$

Shape index is dimensionless. Curvedness is dimensional (L^{-1}) .

Extraction Characterization Classification

Shape Index

Its absolute value S ≡ |Y| represents the local shape of the surface at the point P, with 0 ≤ S ≤ 1.

イロン イヨン イヨン イヨン

Extraction Characterization Classification

Shape Index

- Its absolute value S ≡ | ↑ | represents the local shape of the surface at the point P, with 0 ≤ S ≤ 1.
- Its sign indicates the direction of the normal, distinguishing, for example, convex from concave elliptical points.

イロト イヨト イヨト イヨト

Extraction Characterization Classification

Curvedness and stretching parameter

A nondimensionalization of Λ is required to compare the global shape of surfaces of different sizes:

$$C \equiv \mu \Lambda, \qquad \mu \equiv \frac{3 V}{A}.$$

$$V \equiv \text{Volume}^b$$
, $A \equiv \text{Area}$

^bVolume implies closed surface

I. Bermejo-Moreno and D. I. Pullin

Extraction Characterization Classification

Curvedness and stretching parameter

A nondimensionalization of Λ is required to compare the global shape of surfaces of different sizes:

$$C \equiv \mu \Lambda, \qquad \mu \equiv \frac{3 V}{A}.$$

 $V \equiv \text{Volume}^{b}, A \equiv \text{Area}$ Stretching parameter (global)

$$\lambda \equiv \sqrt[3]{36\pi} \frac{V^{2/3}}{A}$$

Example:
$$C_{sphere} = \lambda_{sphere} = 1$$

^bVolume implies closed surface

On the non-local geometry of turbulence
Extraction Characterization Classification

Signature of a structure

The area-based joint pdf $\mathcal{P}(S, C)^{\dagger}$ represents how the local shape, S, is distributed across the different (relative) scales, C.

From $\mathcal{P}(S, C)$, marginal pdfs, $\mathcal{P}_{\mathcal{S}}(S)$, $\mathcal{P}_{\mathcal{C}}(C)$ can be obtained.

 $^{\dagger} \int \int \mathcal{P}(S, C) \, dS \, dC = 1$

I. Bermejo-Moreno and D. I. Pullin

On the non-local geometry of turbulence

イロン イヨン イヨン イヨン

1.12

1.10 C

Extraction Characterization Classification

Signature of a structure

The area-based joint pdf $\mathcal{P}(S, C)^{\dagger}$ represents how the local shape, S, is distributed across the different (relative) scales, C.

From $\mathcal{P}(S, C)$, marginal pdfs, $\mathcal{P}_{\mathcal{S}}(S)$, $\mathcal{P}_{\mathcal{C}}(C)$ can be obtained.

 $\frac{\{\mathcal{P}(S,C),\mathcal{P}_{\mathcal{S}}(S),\mathcal{P}_{\mathcal{C}}(C),\lambda\} \text{ comprise the signature of a structure.}}{^{\dagger}\int\int \mathcal{P}(S,C)\,dSdC=1}$

I. Bermejo-Moreno and D. I. Pullin

On the non-local geometry of turbulence

Extraction Characterization Classification

Introduction

Methodology

Extraction Characterization Classification

Application

- Test case
- Turbulence numerical data base passive scalar fluctuation Turbulence numerical data base - vorticity square

Conclusions

イロト イヨト イヨト イヨト

Extraction Characterization Classification

Classification

Purpose: assign structures to different groups, based on their signatures.

・ロン ・回 と ・ ヨ と ・ ヨ と

Extraction Characterization Classification

Classification

Purpose: assign structures to different groups, based on their signatures.

Learning-based clustering techniques are used.

・ロン ・回 と ・ ヨ と ・ ヨ と

Extraction Characterization Classification

Classification

Purpose: assign structures to different groups, based on their signatures.

Learning-based clustering techniques are used.

Properties:

- Locally-scaled
- Spectral
- K-means based
- Automatic determination of optimum number of clusters

Extraction Characterization Classification

Clustering algorithm

1. Start from N elements $E = \{e_1, \ldots, e_N\}$ and their signatures.

・ロン ・回 と ・ヨン ・ヨン

Extraction Characterization Classification

Clustering algorithm

- 1. Start from N elements $E = \{e_1, \ldots, e_N\}$ and their signatures.
- Construct the distance matrix: (in the feature space of parameters): d_{ij} = d(e_i, e_j), e_i, e_j ∈ E.

・ロト ・回ト ・ヨト ・ヨト

Extraction Characterization Classification

Clustering algorithm

- 1. Start from N elements $E = \{e_1, \ldots, e_N\}$ and their signatures.
- Construct the distance matrix: (in the feature space of parameters): d_{ij} = d(e_i, e_j), e_i, e_j ∈ E.
- 3. Construct a locally scaled affinity matrix $\hat{A} \in \mathbb{R}^{N \times N}$:

$$\hat{A}_{ij} = \exp\left(-rac{d_{ij}^2}{\sigma_i\sigma_j}
ight)$$
 (1)

・ロン ・回 と ・ ヨ と ・ ヨ と

where σ_I is a *local scaling parameter* (Zelnik) (distance of element e_i to its *R*-th closest neighbor).

Extraction Characterization Classification

Clustering algorithm

- 1. Start from N elements $E = \{e_1, \ldots, e_N\}$ and their signatures.
- Construct the distance matrix: (in the feature space of parameters): d_{ij} = d(e_i, e_j), e_i, e_j ∈ E.
- 3. Construct a locally scaled affinity matrix $\hat{A} \in \mathbb{R}^{N \times N}$:

$$\hat{A}_{ij} = \exp\left(-rac{d_{ij}^2}{\sigma_i\sigma_j}
ight)$$
 (1)

・ロン ・回 と ・ ヨ と ・ ヨ と

where σ_I is a *local scaling parameter* (Zelnik) (distance of element e_i to its *R*-th closest neighbor).

4. Normalize \hat{A} with $D_{ii} = \sum_{j=1}^{N} \hat{A}_{ij}$ obtaining the normalized locally scaled affinity matrix $L = D^{-1/2}AD^{-1/2}$

Extraction Characterization Classification

Clustering algorithm

5. For N_C =min,max number of clusters:

・ロン ・回 と ・ ヨ と ・ ヨ と

Extraction Characterization Classification

Clustering algorithm

- 5. For N_C =min,max number of clusters:
 - (i) Find the N_C largest eigenvectors x_1, \ldots, x_{N_C} of L and form the matrix $X = [x_1, \ldots, x_{N_C}] \in \mathbb{R}^{N \times N_C}$.

・ロト ・回ト ・ヨト ・ヨト

Extraction Characterization Classification

Clustering algorithm

- 5. For N_C =min,max number of clusters:
 - (i) Find the N_C largest eigenvectors x_1, \ldots, x_{N_C} of L and form the matrix $X = [x_1, \ldots, x_{N_C}] \in \mathbb{R}^{N \times N_C}$.
 - (ii) Re-normalize the rows of X so that they have unitary length, obtaining the matrix $Y \in \mathbb{R}^{N \times N_C}$ as $Y_{ij} = X_{ij} / \left(\sum_j X_{ij}^2\right)^{1/2}$

イロト イヨト イヨト イヨト

Extraction Characterization Classification

Clustering algorithm

- 5. For N_C =min,max number of clusters:
 - (i) Find the N_C largest eigenvectors x_1, \ldots, x_{N_C} of L and form the matrix $X = [x_1, \ldots, x_{N_C}] \in \mathbb{R}^{N \times N_C}$.
 - (ii) Re-normalize the rows of X so that they have unitary length, obtaining the matrix $Y \in \mathbb{R}^{N \times N_C}$ as $Y_{ij} = X_{ij} / \left(\sum_j X_{ij}^2\right)^{1/2}$
 - (iii) Treat each row of Y as a point in \mathbb{R}^{N_C} and cluster them into N_C clusters via K-means algorithm.

イロト イヨト イヨト イヨト

Extraction Characterization Classification

Clustering algorithm

- 5. For N_C =min,max number of clusters:
 - (i) Find the N_C largest eigenvectors x_1, \ldots, x_{N_C} of L and form the matrix $X = [x_1, \ldots, x_{N_C}] \in \mathbb{R}^{N \times N_C}$.
 - (ii) Re-normalize the rows of X so that they have unitary length, obtaining the matrix $Y \in \mathbb{R}^{N \times N_C}$ as $Y_{ij} = X_{ij} / \left(\sum_j X_{ij}^2\right)^{1/2}$
 - (iii) Treat each row of Y as a point in \mathbb{R}^{N_C} and cluster them into N_C clusters via K-means algorithm.
 - (iv) Assign the original element e_i to cluster k iff row i of Y was assigned to cluster k in the previous step.

・ロン ・回 と ・ ヨ と ・ ヨ と

Extraction Characterization Classification

Clustering algorithm

- 5. For N_C =min,max number of clusters:
 - (i) Find the N_C largest eigenvectors x_1, \ldots, x_{N_C} of L and form the matrix $X = [x_1, \ldots, x_{N_C}] \in \mathbb{R}^{N \times N_C}$.
 - (ii) Re-normalize the rows of X so that they have unitary length, obtaining the matrix $Y \in \mathbb{R}^{N \times N_C}$ as $Y_{ij} = X_{ij} / \left(\sum_j X_{ij}^2\right)^{1/2}$
 - (iii) Treat each row of Y as a point in \mathbb{R}^{N_C} and cluster them into N_C clusters via K-means algorithm.
 - (iv) Assign the original element e_i to cluster k iff row i of Y was assigned to cluster k in the previous step.
 - (v) Obtain optimality score, for this number of clusters N_C, based on the silhouette coefficient(Rousseeuw), a confidence indicator on the membership of an element to the cluster it was assigned.

・ロン ・回と ・ヨン ・ヨン

Extraction Characterization Classification

Clustering algorithm

- 5. For N_C =min,max number of clusters:
 - (i) Find the N_C largest eigenvectors x_1, \ldots, x_{N_C} of L and form the matrix $X = [x_1, \ldots, x_{N_C}] \in \mathbb{R}^{N \times N_C}$.
 - (ii) Re-normalize the rows of X so that they have unitary length, obtaining the matrix $Y \in \mathbb{R}^{N \times N_C}$ as $Y_{ij} = X_{ij} / \left(\sum_j X_{ij}^2\right)^{1/2}$
 - (iii) Treat each row of Y as a point in \mathbb{R}^{N_C} and cluster them into N_C clusters via K-means algorithm.
 - (iv) Assign the original element e_i to cluster k iff row i of Y was assigned to cluster k in the previous step.
 - (v) Obtain optimality score, for this number of clusters N_C, based on the silhouette coefficient(Rousseeuw), a confidence indicator on the membership of an element to the cluster it was assigned.

6. Determine the optimum number of clusters minimizing the optimality score.

I. Bermejo-Moreno and D. I. Pullin

On the non-local geometry of turbulence

Extraction Characterization Classification

Feature space of parameters

Consists of seven parameters:

- $\{\hat{S}, \hat{C}\}$, feature center of $\mathcal{P}(S, C)$.
- λ , stretching parameter.
- ► $\{d_I^S, d_u^S, d_l^C, d_u^C\}$, feature lower/upper distances of $\mathcal{P}(S, C)$.

Distance matrix is obtained as the Euclidean distance of points in this feature space of parameters.

(1) マン・ション・

Extraction Characterization Classification

Feature space of parameters

The *feature center*, \hat{x} , of a pdf, f(x), is defined as:

$$\hat{x} \equiv \begin{cases} \bar{x} - d_l \sqrt{1 - \left(\frac{d_l}{d_u}\right)^2} & \text{if } d_l < d_u \\ \bar{x} + d_u \sqrt{1 - \left(\frac{d_u}{d_l}\right)^2} & \text{if } d_l > d_u \end{cases}$$

where \bar{x} is the mean or expected value of X, $\bar{x} \equiv \int x f dx$. The *lower* and *upper distances* d_l , d_u , are defined by:

$$d_{l} \equiv \sqrt{\frac{\int_{x \leq \bar{x}} (\bar{x} - x)^{2} f dx}{\int_{x \leq \bar{x}} f dx}} \qquad , \qquad d_{u} \equiv \sqrt{\frac{\int_{x \geq \bar{x}} (\bar{x} - x)^{2} f dx}{\int_{x \geq \bar{x}} f dx}}$$

The *feature center* accounts for the asymmetry of $f_i(x)$,

Extraction Characterization Classification

Feature space of parameters

I. Bermejo-Moreno and D. I. Pullin

On the non-local geometry of turbulence

Extraction Characterization Classification

Visualization space

Based on the *feature space*, it is intended to provide a graphical representation of the distribution of individual structures.

The utilization of *glyphs*, scaling and coloring allows more than three dimensions to be represented in the *visualization space*.

I. Bermejo-Moreno and D. I. Pullin

On the non-local geometry of turbulence

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

イロト イヨト イヨト イヨト

-2

Introduction

Methodology Extraction Characterization Classification

Application

Test case

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Conclusions

Test case Turbulence numerical data

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

イロト イヨト イヨト イヨト

-2

Introduction

Methodology Extraction Characterization Classification

Application

Test case

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Conclusions

Test case

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

イロン イヨン イヨン イヨン

Application to virtual world of structures

Applies the characterization and classification steps to a set of nearly 200 modeled structures of different sizes and shapes.

Test case

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

• • • • • • • • • • • • •

Application to virtual world of structures

Applies the characterization and classification steps to a set of nearly 200 modeled structures of different sizes and shapes.

Three main groups are automatically educed (blob, tube, sheet-like) assigning each element to the correct group.

Test case

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Application to virtual world of structures

Applies the characterization and classification steps to a set of nearly 200 modeled structures of different sizes and shapes.

Three main groups are automatically educed (blob, tube, sheet-like) assigning each element to the correct group.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

イロト イヨト イヨト イヨト

-2

Introduction

Methodology Extraction Characterizatior Classification

Application

Test case

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Conclusions

Test case **Turbulence numerical data base** - passive scalar fluctuation Turbulence numerical data base - vorticity square

・ロト ・回ト ・ヨト ・ヨト

Numerical data base (O'Gorman)

• DNS with 512³ grid points in a periodic cube $2\pi^3$.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

・ロン ・回 と ・ ヨ と ・ ヨ と

- DNS with 512³ grid points in a periodic cube $2\pi^3$.
- ► The incompressible Navier-Stokes equations for the velocity field and the advection-diffusion equation for the passive scalar solved by Fourier-Galerkin pseudo-spectral method.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

・ロン ・回 と ・ ヨ と ・ ヨ と

- DNS with 512³ grid points in a periodic cube $2\pi^3$.
- ► The incompressible Navier-Stokes equations for the velocity field and the advection-diffusion equation for the passive scalar solved by Fourier-Galerkin pseudo-spectral method.
- Velocity field forced at large scales, becoming statistically stationary in time.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

イロト イポト イヨト イヨト

- DNS with 512³ grid points in a periodic cube $2\pi^3$.
- ► The incompressible Navier-Stokes equations for the velocity field and the advection-diffusion equation for the passive scalar solved by Fourier-Galerkin pseudo-spectral method.
- Velocity field forced at large scales, becoming statistically stationary in time.
- Mean scalar gradient imposed so that the scalar fluctuation field became also statistically stationary in time.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

イロト イポト イヨト イヨト

- DNS with 512³ grid points in a periodic cube $2\pi^3$.
- ► The incompressible Navier-Stokes equations for the velocity field and the advection-diffusion equation for the passive scalar solved by Fourier-Galerkin pseudo-spectral method.
- Velocity field forced at large scales, becoming statistically stationary in time.
- Mean scalar gradient imposed so that the scalar fluctuation field became also statistically stationary in time.
- Scalar fluctuation statistically homogeneous.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

- DNS with 512³ grid points in a periodic cube $2\pi^3$.
- ► The incompressible Navier-Stokes equations for the velocity field and the advection-diffusion equation for the passive scalar solved by Fourier-Galerkin pseudo-spectral method.
- Velocity field forced at large scales, becoming statistically stationary in time.
- Mean scalar gradient imposed so that the scalar fluctuation field became also statistically stationary in time.
- Scalar fluctuation statistically homogeneous.
- Reynolds number based on the integral length scale is 1901.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

- DNS with 512³ grid points in a periodic cube $2\pi^3$.
- ► The incompressible Navier-Stokes equations for the velocity field and the advection-diffusion equation for the passive scalar solved by Fourier-Galerkin pseudo-spectral method.
- Velocity field forced at large scales, becoming statistically stationary in time.
- Mean scalar gradient imposed so that the scalar fluctuation field became also statistically stationary in time.
- Scalar fluctuation statistically homogeneous.
- Reynolds number based on the integral length scale is 1901.
- Taylor Reynolds number is $Re_T = 265$.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

- DNS with 512³ grid points in a periodic cube $2\pi^3$.
- ► The incompressible Navier-Stokes equations for the velocity field and the advection-diffusion equation for the passive scalar solved by Fourier-Galerkin pseudo-spectral method.
- Velocity field forced at large scales, becoming statistically stationary in time.
- Mean scalar gradient imposed so that the scalar fluctuation field became also statistically stationary in time.
- Scalar fluctuation statistically homogeneous.
- Reynolds number based on the integral length scale is 1901.
- Taylor Reynolds number is $Re_T = 265$.
- Schmidt number of the simulation is 0.7.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

イロト イヨト イヨト イヨト

- DNS with 512³ grid points in a periodic cube $2\pi^3$.
- ► The incompressible Navier-Stokes equations for the velocity field and the advection-diffusion equation for the passive scalar solved by Fourier-Galerkin pseudo-spectral method.
- Velocity field forced at large scales, becoming statistically stationary in time.
- Mean scalar gradient imposed so that the scalar fluctuation field became also statistically stationary in time.
- Scalar fluctuation statistically homogeneous.
- Reynolds number based on the integral length scale is 1901.
- Taylor Reynolds number is $Re_T = 265$.
- Schmidt number of the simulation is 0.7.
- $k_{max}\eta = 1.05.$
Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

ロト (日) (日) (日)

Multiscale diagnosis

 512^3 points \Rightarrow 7 scales available in curvelet domain:

Plane cuts of cube faces

I. Bermejo-Moreno and D. I. Pullin On the non-local geometry of turbulence

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Multiscale diagnosis

512³ points \Rightarrow 7 scales available in curvelet domain:

Plane cuts normal to z axis.

Test case **Turbulence numerical data base - passive scalar fluctuation** Turbulence numerical data base - vorticity square

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

Multiscale diagnosis

$512^3 \text{ points} \Rightarrow 7 \text{ scales available in curvelet domain:}$

Volume data pdfs and spectra of passive scalar fluctuation fields.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Multiscale diagnosis

$512^3 \text{ points} \Rightarrow 7 \text{ scales available in curvelet domain:}$

Volume data pdfs and spectra of passive scalar fluctuation fields.

Pdfs of scales 1, 2, 3 (inertial range) almost collapse, getting narrower for dissipation scales (4, 5, 6).

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

・ロン ・回と ・ヨン ・ヨン

Multiscale diagnosis

An equivalent decomposition is done for the velocity field.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

・ロン ・回 と ・ ヨ と ・ ヨ と …

Multiscale diagnosis

An equivalent decomposition is done for the velocity field.

Define characteristic squared integral velocities, $\overline{u_i^2}$, and integral length scales, L_i and L'_i , for each scale *i* as:

$$\overline{u_{i}^{2}} = \frac{2}{3} \int_{0}^{\infty} E_{i}(k) dk, \ L_{i} = \frac{\pi}{2\overline{u^{2}}} \int_{0}^{\infty} \frac{E_{i}(k)}{k} dk, \ L_{i}' = \frac{\pi}{2\overline{u_{i}^{2}}} \int_{0}^{\infty} \frac{E_{i}(k)}{k} dk$$

where $E_i(k)$ is the energy spectrum associated to scale *i*

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

・ロン ・回 と ・ ヨ と ・ ヨ と …

Multiscale diagnosis

An equivalent decomposition is done for the velocity field.

Define characteristic squared integral velocities, $\overline{u_i^2}$, and integral length scales, L_i and L'_i , for each scale *i* as:

$$\overline{u_{i}^{2}} = \frac{2}{3} \int_{0}^{\infty} E_{i}(k) dk, \ L_{i} = \frac{\pi}{2\overline{u^{2}}} \int_{0}^{\infty} \frac{E_{i}(k)}{k} dk, \ L_{i}' = \frac{\pi}{2\overline{u_{i}^{2}}} \int_{0}^{\infty} \frac{E_{i}(k)}{k} dk$$

where $E_i(k)$ is the energy spectrum associated to scale *i* From the properties of the filtering in curvelet domain:

$$E(k) = \sum_{i} E_i(k), \qquad \overline{u^2} = \sum_{i} \overline{u_i^2}$$

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Multiscale diagnosis

An equivalent decomposition is done for the velocity field.

scale	$\overline{u_i^2}/\overline{u^2}$	L_i/η^{\dagger}	L_i'/η
original	1.000	249.6	249.6
0	0.591	226.9	383.8
1	0.155	14.68	96.1
2	0.113	5.235	46.2
3	0.085	1.927	22.8
4	0.044	0.519	11.9
5	0.011	0.070	6.3
6	0.001	0.004	3.3

$^{\dagger}\eta \equiv \text{Kolmogore}$	ov length-scale
--	-----------------

I. Bermejo-Moreno and D. I. Pullin

On the non-local geometry of turbulence

イロン イヨン イヨン イヨン

est case

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

ヘロン ヘヨン ヘヨン ヘヨン

lso-contours

Iso-contours of original field and filtered scales.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

lso-contours

Iso-contours filtered scale 2.

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

-2

I. Bermejo-Moreno and D. I. Pullin On the non-local geometry of turbulence

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

lso-contours

Iso-contours filtered scale 3.

・ロト ・回ト ・モト ・モト

2

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

lso-contours

Iso-contours filtered scale 4.

・ロン ・回 と ・ ヨン ・ ヨン

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

lso-contours

Iso-contours filtered scale 5.

・ロン ・回 と ・ ヨン ・ ヨン

э

I. Bermejo-Moreno and D. I. Pullin On the non-local geometry of turbulence

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

イロト イポト イヨト イヨト

Individual structures - Visualization space

Individual structures corresponding to scales 1-5 are characterized.

Scales 0 (largest) and 6 (smallest) are not included:

- scale $0 \Rightarrow$ dependent on the boundary conditions.
- ► scale 6 ⇒ ignored to avoid lack of spatial resolution and aliasing effects.

First, individual structures are represented in a *visualization space* by spheres with:

- center = $\{\hat{S}, \hat{C}, \lambda\}$.
- color \Rightarrow filtered scale number in curvelet space.
- radius = area of the surface, in a log-normalized scale.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

- center = $\{\hat{S}, \hat{C}, \lambda\}$.
- color \Rightarrow filtered scale number in curvelet space.
- diameter = area of the surface, in a log-normalized scale.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

-2

- center = $\{\hat{S}, \hat{C}, \lambda\}$.
- color \Rightarrow filtered scale number in curvelet space.
- ▶ diameter = area of the surface, in a log-normalized scale.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

- center = $\{\hat{S}, \hat{C}, \lambda\}$.
- color \Rightarrow filtered scale number in curvelet space.
- diameter = area of the surface, in a log-normalized scale.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

- center = $\{\hat{S}, \hat{C}, \lambda\}$.
- color \Rightarrow filtered scale number in curvelet space.
- diameter = area of the surface, in a log-normalized scale.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

- center = $\{\hat{S}, \hat{C}, \lambda\}$.
- color \Rightarrow filtered scale number in curvelet space.
- ▶ diameter = area of the surface, in a log-normalized scale.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

• center =
$$\{\hat{S}, \hat{C}, \lambda\}$$
.

- color \Rightarrow filtered scale number in curvelet space.
- diameter = area of the surface, in a log-normalized scale.

Test case **Turbulence numerical data base** - passive scalar fluctuation Turbulence numerical data base - vorticity square

(日) (同) (E) (E) (E) (E)

Individual structures - Visualization space

Representative points:

► $A, B, C \rightarrow$ blob-like.

▶ $D, E, F \rightarrow$ transition to tube-like with low/moderate stretching.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Individual structures - Visualization space

I. Bermejo-Moreno and D. I. Pullin

On the non-local geometry of turbulence

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

イロト イヨト イヨト イヨト

Individual structures - Visualization space

Representative points:

- ▶ $H, I, K, L \rightarrow$ tube-like with increasing stretching/complexity.
- $J, M \rightarrow$ patches with smaller curvedness.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Individual structures - Visualization space

I. Bermejo-Moreno and D. I. Pullin

On the non-local geometry of turbulence

Test case **Turbulence numerical data base** - passive scalar fluctuation Turbulence numerical data base - vorticity square

ロト ・ 同ト ・ ヨト ・ ヨト

Individual structures - Visualization space

Representative points:

- ▶ $N, O, P \rightarrow$ lower curvedness with increasing stretching/complexity.
- ▶ $Q, R, S \rightarrow$ decreasing curvedness \rightarrow sheet-like.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Individual structures - Visualization space

I. Bermejo-Moreno and D. I. Pullin

On the non-local geometry of turbulence

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

<ロ> (日) (日) (日) (日) (日)

Individual structures - Visualization space

Representative points:

► $T - Z \rightarrow$ sheet-like.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Individual structures - Visualization space

I. Bermejo-Moreno and D. I. Pullin

On the non-local geometry of turbulence

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

・ロン ・回と ・ヨン ・ヨン

Classification via clustering

The *feature space* of parameters used for clustering includes $\{\hat{S}, \hat{C}, \lambda, d_u^S, d_l^S, d_u^C, d_l^C\}$

The clustering results are represented in a *visualization space*, where each sphere represents a structure.

- center = $\{\hat{S}, \hat{C}, \lambda\}$.
- color \Rightarrow cluster ID.
- radius ⇒ silhouette coefficient, SC, (degree of membership to the assigned cluster).

• bars
$$\Rightarrow d_I^S, d_u^S, d_I^C, d_u^C$$
, scaled by SC.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Classification via clustering

Glyphs (sphere+bars):

- center = $\{\hat{S}, \hat{C}, \lambda\}$.
- color \Rightarrow cluster ID.
- radius \Rightarrow *SC*.
- bars $\Rightarrow d_I^S, d_u^S, d_l^C, d_u^C$.

<ロ> (日) (日) (日) (日) (日)

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

イロト イヨト イヨト イヨト

-2

Introduction

Methodology Extraction Characterization Classification

Application

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Conclusions

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Numerical data base (Horiuti)

► DNS with 256³, 512³ and 1024^{3†} grid points in a periodic cube.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Numerical data base (Horiuti)

- ► DNS with 256³, 512³ and 1024^{3†} grid points in a periodic cube.
- Homogeneous isotropic turbulence.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Numerical data base (Horiuti)

- ► DNS with 256³, 512³ and 1024^{3†} grid points in a periodic cube.
- Homogeneous isotropic turbulence.
- Taylor Reynolds numbers: $Re_T = 77.2, 76.87, 77.43$.

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Numerical data base (Horiuti)

- ► DNS with 256³, 512³ and 1024^{3†} grid points in a periodic cube.
- Homogeneous isotropic turbulence.
- Taylor Reynolds numbers: $Re_T = 77.2, 76.87, 77.43$.

•
$$k_{max}\eta = 1.02, 2.05, 4.09.$$

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Numerical data base (Horiuti)

- ► DNS with 256³, 512³ and 1024^{3†} grid points in a periodic cube.
- Homogeneous isotropic turbulence.
- Taylor Reynolds numbers: $Re_T = 77.2, 76.87, 77.43$.

•
$$k_{max}\eta = 1.02, 2.05, 4.09.$$

Same initial conditions in the three cases.
Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Numerical data base (Horiuti)

- ► DNS with 256³, 512³ and 1024^{3†} grid points in a periodic cube.
- Homogeneous isotropic turbulence.
- Taylor Reynolds numbers: $Re_T = 77.2, 76.87, 77.43$.

•
$$k_{max}\eta = 1.02, 2.05, 4.09.$$

- Same initial conditions in the three cases.
- Purpose: Study effect of increasing resolution on the geometry of structures.

[†]1024³ case currently under analysis. Only results for 256³ and 512³ shown. ∽ < ⊂ I. Bermejo-Moreno and D. I. Pullin On the non-local geometry of turbulence

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Numerical data base (Horiuti)

- ► DNS with 256³, 512³ and 1024^{3†} grid points in a periodic cube.
- Homogeneous isotropic turbulence.
- Taylor Reynolds numbers: $Re_T = 77.2, 76.87, 77.43$.

•
$$k_{max}\eta = 1.02, 2.05, 4.09.$$

- Same initial conditions in the three cases.
- Purpose: Study effect of increasing resolution on the geometry of structures.
- Scalar field of study: square of the vorticity.

[†]1024³ case currently under analysis. Only results for 256³ and 512³ shown.

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Plane cut comparison - 256³ vs 512³ vs 1024³

256³

512³

・ロン ・回 と ・ ヨン ・ ヨン

1024³

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Plane cut comparison - 256³ vs 512³ vs 1024³

256³

-2

zoom

I. Bermejo-Moreno and D. I. Pullin On the non-local geometry of turbulence

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Plane cut comparison - 256³ vs 512³ vs 1024³

512³

イロト イヨト イヨト イヨト

-2

zoom

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Plane cut comparison - 256³ vs 512³ vs 1024³

1024³

・ロ・ ・ 日・ ・ 日・ ・ 日・

-2

zoom

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

イロン イヨン イヨン イヨン

-2

Multiscale diagnosis

256³ points \Rightarrow 6 scales available in curvelet domain:

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

イロン イヨン イヨン イヨン

-2

Multiscale diagnosis

$512^3 \text{ points} \Rightarrow 7 \text{ scales available in curvelet domain:}$

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

イロト イヨト イヨト イヨト

-2

Multiscale diagnosis

$512^3 \text{ points} \Rightarrow 7 \text{ scales available in curvelet domain:}$

Pdfs of scales 1-4 get wider, and 4-6 get narrower.

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Isocontours - 256³ vs 512³

< □ > < □ > < □ > < Ξ > < Ξ > ...

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Isocontours - 256³ vs 512³

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Isocontours - 256³ vs 512³

I. Bermejo-Moreno and D. I. Pullin On the non-local geometry of turbulence

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Isocontours - 256³ vs 512³

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

lsocontours - 256^3 vs 512^3

I. Bermejo-Moreno and D. I. Pullin On the non-local geometry of turbulence

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Isocontours - 256³ vs 512³

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

lsocontours - 512^3 - zoom scales 4 and 5

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

lsocontours - 512^3 - zoom scales 4 and 5

< □ > < □ > < □ > < □ > < □ > .

3

zoom

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Individual structures - visualization space - 256³ vs 512³

256³ - scales 1-4

・ロン ・回 と ・ ヨン ・ ヨン

512³ - scales 1-5

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Individual structures - visualization space - 256³ vs 512³

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

э

Individual structures - visualization space - 256³ vs 512³

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Individual structures - visualization space - 256³ vs 512³

512³ - scale 3

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Individual structures - visualization space - 256³ vs 512³

3

256³ - scale 4

512³ - scale 4

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Individual structures - visualization space - 256³ vs 512³

・ロン ・回 と ・ ヨン ・ ヨン

512³ - scale 5

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

イロン イヨン イヨン イヨン

3

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Test case Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Introduction

Methodology Extraction Characterizatior Classification

Application Test case

Turbulence numerical data base - passive scalar fluctuation Turbulence numerical data base - vorticity square

Conclusions

- 4 回 2 - 4 □ 2 - 4 □

-2

Conclusions

New methodology for the identification of structures in turbulence:

- multi-scale, non-local, geometry-based
- ▶ three main steps: extraction, characterization, classification

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Conclusions

New methodology for the identification of structures in turbulence:

- multi-scale, non-local, geometry-based
- three main steps: extraction, characterization, classification

Application to passive scalar fluctuation field (512^3) :

- smaller scales present narrower volume pdfs (overlapping in the inertial range)
- geometry of individual structures evolves from blob/tube-like with low to moderate stretching in the inertial range towards tube/sheet-like with high stretching in the dissipation range.
- ► smooth transition of geometry → difficult clustering (not clearly distinct groups → other clustering techniques can be applied: density-based, fuzzy c-means)

Conclusions

New methodology for the identification of structures in turbulence:

- multi-scale, non-local, geometry-based.
- ▶ three main steps: extraction, characterization, classification.

Application to **vorticity square** field $(256^3, 512^3)$:

- ▶ 256³, $k_{max}\eta \approx 1 \Rightarrow$ blob to tube-like structures for smaller scales.
- ► 512³, $k_{max}\eta \approx 2 \Rightarrow$ blob to tube to sheet-like structures for smaller scales.
- increasing resolution shows, for the same Reynolds number, the appearance of sheet structures with rolling geometry at the smallest scales.

・ロン ・回 と ・ ヨン ・ ヨン

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで