Small-scale turbulence; theory, phenomenology and applications

Stretched vortices as basis for SGS modeling

D.I. Pullin

Graduate Aeronautical Laboratories

California Institute of Technology

Cargèse, August 20, 2007

Ashish Misra, Tobias Voelkl, Ravi Samtaney, Branko Kosovic

Overview

- Motivation; why LES?
- Expectations of LES. Some present models.
- Stretched-vortex sub-grid scale model
 - Structure-based SGS model (2C-3P)
 - SGS stresses
 - SGS vortex orientations
- Example Applications
 - Decaying incompressible turbulence
 - Channel flow at moderate Re_\tau
 - Aircraft trailing vortices
- Subgrid-flux model for passive scalar
 - Overholt-Pope test
- LES of compressible turbulence

Re_{τ}	L_x/δ	L_z/δ	Points	Year
180	12	6	5 M	1987 [11]
$\frac{590}{550}$	$\frac{6}{25}$	$\frac{3}{12}$	40 M 600 M	$ \begin{array}{c} 1997 [12] \\ 2001 [13] \end{array} $
950	25	9	4 G	2003 [14]
$\frac{1900}{10000}$	$\frac{3}{12}$	$\frac{1.5}{6}$	450 M 900 T	2003 [14] 2015?

Table 2. Characteristics of some representative channel-flow simulations.

• Jiménez (JOT, 2003)

Large-Eddy Simulation

physical space: fine-scale fluctuations not resolved, their influence is modeled.

spectral space: resolved range, $k < k_c$ (cutoff wavenumber k_c), subgrid range $k > k_c$.

LES and SGS modeling

• LES equations

$$\frac{\partial \tilde{U}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\tilde{U}_i \tilde{U}_j \right) = -\frac{\partial \tilde{P}}{\partial x_i} - \frac{\partial T_{ij}}{\partial x_j} + \nu \frac{\partial^2 \tilde{U}_i}{\partial x_j \partial x_j} + F_i$$

Large-eddy simulation (LES) makes modeling assumptions;

• $T_{ij} = \widetilde{U_i U_j} - \widetilde{U}_i \widetilde{U}_j$; Subgrid stresses are replaced by some model T_{ij} : subgrid stress (SGS) model:

$$T_{ij} = T_{ij}[\hat{U}_j, \partial \hat{U}_i / \partial x_j, \dots]$$

• $\tilde{U}_j \to \hat{U}_j$; Filtered field \tilde{U}_j is modeled by a computed under-resolved field $\hat{U}_j.$

What can (should) we expect from LES?

- Robustness for different flows at large Re
- One-point statistics (velocity, density, concentration)
- Two-point statistics across full wavenumber range?
- Predictive for turbulent mixing
- Estimates for full turbulent fields
 - Not just the 'filtered' part
 - Multiscale LES
- Knowledge of Reynolds number; what is it?
- Fast convergence to DNS
 - In some cases DNS is not available
 - DNS not achieved for compressible turbulence containing strong shocks

SGS models

- Smagorinsky
- Dynamic Smagorinsky (CTR, Germano)
- Eddy-viscosity structure function (Lesieur, Mètais)
- Scale-similarity (Bardina)
- MILES (Boris, Grinstein)
- Approximate deconvolution model (Leonard, Adams)
- Optimal LES (Adrian, Moser)
- Stretched-vortex subgrid model

- 512^3, k_max*η = 2.08 (Horiuti)
- R_λ = 77
- Curvelet transform; scale 2

- 512^3, k_max*η = 2.08
- R_λ = 77
- Curvelet transform; scale 3

- 512^3, k_max*η = 2.08
- R_λ = 77
- Curvelet transform; scale 4

- 512^3, k_max*η = 2.08
- R_λ = 77
- Curvelet transform; scale 5

512³ - scales 1-5

Explicit SGS model; stretched-vortex model

Small scales of turbulence Intense vorticity in form of ``worms''

Ashurst, Jimenez et al (1993)

• Can this be used as a basis of a stucture-based sub-grid scale model?

Subgrid-scale vortex: 2C-3P model

- Structure-based approach ۲
- Subgrid motion represented by nearly axisymmetric vortex tube within each cell •
- Vortex tube modeled by columnar vortex embedded in time-varying linear field ٠
- Time-varying linear field is provided by local velocity-gradient of resolved-scale flow •

Explicit SGS model; stretched-vortex model

Structure-based approach Subgrid motion represented by nearly axisymmetric vortex tube within each cell Local solution of NS equations for stretchedspiral vortex Lundgren (1982), Pullin & Lundgren (2001) Δx . A Subgrid transport: 3 $\tau_{ij} = \overline{\rho} \tilde{K} (\delta_{ij} - e_i^v e_j^v)$ $q_i^T = -\overline{\rho} \frac{\Delta_c}{2} \tilde{K}^{1/2} (\delta_{ij} - e_i^v e_j^v) \frac{\partial (\tilde{c}_p \tilde{T})}{\partial x_i}$ $q_i^{\psi} = -\overline{\rho} \frac{\Delta_c}{2} \tilde{K}^{1/2} (\delta_{ij} - e_i^v e_j^v) \frac{\partial \tilde{\psi}}{\partial x_j}$ $\tilde{K} = \int_{k}^{\infty} E(k)dk, \qquad k_c = \pi/\Delta_c$

Model parameters

• Subgrid energy spectrum (Lundgren, 1982)

$$E(k) = \mathcal{K}_0 \epsilon^{2/3} k^{-5/3} \exp[-2k^2 \nu/(3|\tilde{a}|)]$$

$$\tilde{a} = \tilde{S}_{ij}e_i^v e_j^v, \qquad \tilde{S}_{ij} = \frac{1}{2}\left(\frac{\partial \tilde{u}_i}{\partial x_j} + \frac{\partial \tilde{u}_j}{\partial x_i}\right)$$

- Parameters obtained from resolved-scale, second order velocity structure-functions (Lesieur et al)
- Spherically averaged structure functions

$$\mathcal{K}_{0}\epsilon^{2/3} = \frac{\overline{\mathcal{F}_{2}}(\triangle)}{\triangle^{2/3}A}, \qquad A = 4\int_{0}^{\pi} s^{-5/3}(1-s^{-1}\sin s)ds \approx 1.90695$$
$$\overline{\mathcal{F}_{2}}(\triangle) = \frac{1}{6}\sum_{j=1}^{3} \left(\delta\tilde{u_{1}^{+}}^{2} + \delta\tilde{u_{2}^{+}}^{2} + \delta\tilde{u_{3}^{+}}^{2} + \delta\tilde{u_{1}^{-}}^{2} + \delta\tilde{u_{2}^{-}}^{2} + \delta\tilde{u_{3}^{-}}^{2}\right)_{j},$$

Subgrid vortex orientation *e*

- Phenomenology
 - λ : fraction aligned with principal extensional eigenvector of resolved rate-of-strain tensor (corresponding eigenvalue, λ_3)
 - (1λ) : fraction aligned with resolved vorticity vector, ω (Misra & Pullin 1997)

$$\lambda = \frac{\lambda_3}{\lambda_3 + \|\boldsymbol{\omega}\|}$$

- 2C-3P dynamic rotation model
 - Subgrid vortex orientation responds to local time-varying resolved-scale rate of strain tensor A_ij

$$\frac{\partial e_i}{\partial t} = e_j \widetilde{A}_{ij} - e_i e_k e_j \widetilde{A}_{kj}$$

17

Scalar spectrum from stretched-spiral vortex

Schematic showing winding of scalar field by `subgrid vortex'. Contours of passive scalar

1-D scalar spectrum for homogeneous turbulence, Pullin & Lundgren (2001)

_ Sc = 7, ----- Sc = 700. Symbols, Data

(Gibson & Schwarz 1963)

Decay of homogeneous turbulence

- 32^3 LES of decaying turbulence; R_\lambda = 70 (PF, 1997)
- Data; Comte-Bellot & Corssin (1971)

Decay of homogeneous turbulence

- 32^3 LES of decaying turbulence; R_\lambda = 70 (PF, 1997)
- Data; Comte-Bellot & Corssin (1971)

Velocity (energy) spectrum

LES of turbulent channel flow: Re_tau = 1017

Domain size: $2.5\pi\delta \times \pi\delta \times 2\delta$, effective resolution: $48 \times 64 \times 65$.

Partial Resolution of viscous sublayer !!!!!!

Rotating channel flow

$$Ro_{ au}=$$
 7.625, $\omega_z=\pm 15 u_{ au}/h$

• Filtered equation for a passive scalar ϕ is

$$\frac{\partial \tilde{\phi}}{\partial t} + \frac{\partial}{\partial x_j} \left(\tilde{\phi} \tilde{U}_j \right) = -\frac{\partial g_j}{\partial x_j} + D \frac{\partial^2 \tilde{\phi}}{\partial x_j \partial x_j}$$
$$g_j = \tilde{\phi} \tilde{U}_j - \tilde{\phi} \tilde{U}_j$$

 g_j is the subgrid flux of ϕ by the turbulent velocity field.

- We model g_j by the winding of $\tilde{\phi}$ field by an axisymmetric model subgrid vortex

• Subgrid velocity field. Scalar convection equation

$$u_{\theta} = r \,\Omega(r), \quad u_{r} = u_{x_{3}'} = 0, \qquad \frac{\partial \phi}{\partial t} + \Omega(r) \frac{\partial \phi}{\partial \theta} = 0$$
$$\phi(r, \theta, t) = r \cos[\theta - \Omega t] \left(\frac{\partial \tilde{\phi}}{\partial x_{1}'}\right) + r \sin[\theta - \Omega t] \left(\frac{\partial \tilde{\phi}}{\partial x_{2}'}\right) + \text{background}$$

• Average over cylinder, $R_1 = \Delta$, stiring time T and pdf of Γ

$$g_1' + i g_2' = \frac{1}{\pi R_1^2 T} \int_{-\infty}^{\infty} \int_0^{2\pi} \int_0^{R_1} \int_0^T \phi(r, \theta, t) \, i \, u_\theta \, \mathrm{e}^{i\theta} \, p(\Gamma) \, d\theta \, r dr \, dt \, d\Gamma$$

• In laboratory co-ordinates

$$g_j = -\frac{1}{2} KT \left(\delta_{jp} - e_j^v e_p^v\right) \frac{\partial \tilde{\phi}}{\partial x_p}, \qquad K = \frac{1}{R_1^2} \int_0^{R_1} r^3 \Omega^2(r) dr$$

• Assume $T = \gamma \Delta x / K^{1/2}$. Argument based on scalar, velocity structure functions then gives

$$\gamma = \frac{2}{\pi \beta} \left(\frac{2}{3\mathcal{K}_0} \right)^{1/2}, \quad \mathcal{K}_0 = 1.67, \quad \beta = 0.67 \to \gamma = 0.74$$

• Scalar flux subgrid model - tensor diffusivity

$$g_i = -\frac{\gamma \pi}{2 k_c} K^{\frac{1}{2}} (\delta_{ip} - e_i^v e_p^v) \frac{\partial \tilde{\phi}}{\partial x_p}$$

SGS $T_{ij} = K (\delta_{ij} - e_i^v e_j^v)$

- Model parameter $\gamma = 1$ (present demonstration)
- Model appropriate for $Sc = \nu/D = O(1)$
- Model suggests scalar gradient is orthogonal to small scale vorticity (Ruetsch & Ferziger, DNS, 1997).

Passive scalar with imposed mean scalar gradient in forced homogeneous turbulence

• Forced turbulence in (2 π)³ box (32³). $\tilde{\phi} = \alpha_1 x_1 + \hat{\phi}$

$$\frac{1}{2}\frac{\partial}{\partial t}\left\langle \hat{\phi}^{2}\right\rangle + \alpha_{1}\left\langle \hat{\phi}\,\tilde{U}_{1}\right\rangle = \left\langle g_{i}\frac{\partial\hat{\phi}}{\partial x_{i}}\right\rangle - D\left\langle \left(\frac{\partial\hat{\phi}}{\partial x_{i}}\right)^{2}\right\rangle$$

- α_1 is preserved by the evolution
- Statistical steady state for $\left< \hat{\phi}^2 \right>$
- DNS, $R_{\lambda} = 27 180$ [Overholt and Pope, **Phys Fluids**, 1996]

Passive scalar with imposed mean scalar gradient in forced homogeneous turbulence

1.4

Scalar variance $\langle \phi'^2 \rangle / (\alpha_1 L_{\epsilon})^2$ versus t. Sc = 0.7 $L_{\epsilon} = u'^3 / \epsilon$, $T_L = L/u' \approx 2.2$

Scalar variance, 32^3 LES compared to DNS - Overholt & Pope (1996), $32^3 - 256^3$. Sc = 0.7.

Velocity and resolved-scalar spectra

FIG. 7. Resolved flow energy spectra, LES (spiral). Cross: $\text{Re}_{\lambda} = 27$. Circle: $\text{Re}_{\lambda} = 52$. Diamond: $\text{Re}_{\lambda} = 84$. Left triangle: $\text{Re}_{\lambda} = 134$. Right triangle: $\text{Re}_{\lambda} = 180$. Inverted triangle: $\text{Re}_{\lambda} = 444$. Triangle: $\text{Re}_{\lambda} = 810$. Square: $\text{Re}_{\lambda} = 1540$. Dash-dotted line: slope -5/3.

FIG. 8. Resolved flow scalar spectra, LES (spiral). For key see Fig. 7.

Compressible flow: Favre-filtered Navier-Stokes equations

$$\begin{aligned} \frac{\partial \overline{\rho}}{\partial t} &+ \frac{\partial \overline{\rho} \tilde{u}_j}{\partial x_j} = 0 \\ \frac{\partial \overline{\rho} \tilde{u}_i}{\partial t} &+ \frac{\partial (\overline{\rho} \tilde{u}_i \tilde{u}_j + \overline{p} \delta_{ij})}{\partial x_j} = \frac{\partial \sigma_{ij}}{\partial x_j} - \frac{\partial \tau_{ij}}{\partial x_j} \\ \frac{\partial \overline{E}}{\partial t} &+ \frac{\partial (\overline{E} + \overline{p}) \tilde{u}_j}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\overline{\kappa} \frac{\partial \overline{T}}{\partial x_j} \right) + \frac{\partial \sigma_{ji} \tilde{u}_i}{\partial x_j} - \frac{\partial q_j^T}{\partial x_j} \\ \frac{\partial \overline{\rho} \tilde{\psi}}{\partial t} &+ \frac{\partial (\overline{\rho} \tilde{\psi} \tilde{u}_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\overline{\rho} \tilde{D} \frac{\partial \tilde{\psi}}{\partial x_j} \right) - \frac{\partial q_j^\psi}{\partial x_j} \end{aligned}$$

$$\tau_{ij} = \overline{\rho}(\widetilde{u_i u_j} - \widetilde{u}_i \widetilde{u}_j)$$

$$q_j^T = \overline{\rho}(c_p T u_j - \tilde{c}_p T \widetilde{u}_j)$$

$$q_j^{\psi} = \overline{\rho}(\widetilde{\psi u_j} - \tilde{\psi} \widetilde{u}_j)$$

$$\overline{E} = \frac{\overline{p}}{(\tilde{\gamma} - 1)} + \frac{1}{2} \overline{\rho}(\widetilde{u}_k \widetilde{u}_k) + \frac{1}{2} \tau_{kk}$$

$$\overline{p} = \frac{\overline{\rho} R \widetilde{T}}{\widetilde{m}}$$

- Two-component Favre-filtered NS equations
- Filtering procedure strictly formal
 - Not performed explicitly in LES
 - Guide to SGS modeling
- Favre-filtered quantities identified with resolved-scale quantities in LES
 - Modeling assumption on par with SGS modeling
- Model SGS temperature flux as passive scalar

LES of compressible turbulence. LES and strong shocks (D. Hill). Hybrid WENO-TCDS algorithm:

- Numerical methods for shock-capturing and LES `orthogonal'.
- Our solution: hybrid technique: blending Weighted Essentially Non-Oscillatory (WENO) scheme with Tuned Centered-Difference (TCD) stencil.
- WENO in regions of very-large density ratio (Shocks)
 - But WENO is not suitable for LES in smooth regions away from shocks.
 - Upwinding strategy is too dissipative
- Tuned center-difference (TCD) stencil in smooth regions away from shocks
 - Low numerical dissipation (centered method)
 - optimized for minimum resolved-scale discretization error in LES (Ghosal, 1996)
 - 5- or 7-point stencil trades off formal order of accuracy for small dispersion errors
- Target WENO stencil = TCD stencil
- In practice, target TCD stencil not always achieved; switch is used based on acceptable WENO smoothness measure
- Hybrid method designed for LES in presence of strong shocks

Shock capturing solvers; WENO

- True shocks have a thickness on the mean • free path order
- The shocks are not resolved: Euler • equations are solved in conservative form
- Euler solver shocks are 'captured', I.e. smeared across a few cells - first-order accurate at shocks

$$\frac{d\mathbf{q}}{dt} + \frac{\partial \mathbf{F}(\mathbf{q})}{\partial x} + \frac{\partial \mathbf{G}(\mathbf{q})}{\partial y} + \frac{\partial \mathbf{H}(\mathbf{q})}{\partial z} = 0$$
$$\mathbf{q} = \left(\rho, \rho u, \rho v, \rho w, E\right)^{T}$$
$$\mathbf{F}(\mathbf{q}) = \begin{pmatrix}\rho u\\ \rho u^{2} + P\\ \rho uv \end{pmatrix}$$

ρυν

ρuw

 $\rho u(E+P)$

Real par Modified Wavenumber Wavenumber -0. maginary part (dissipation -1.5

Weighted Essentially Non-Oscillatory (WENO) method (Osher)

Tuned Center-Difference Stencil (TCD)

- Ghosal (JCP, 1996)
- Error in resolved-scale energy spectrum produced by one step of Navier-Stokes equations using given discretization
- Asssume
 - Von-Karman energy spectrum
 - Joint normal velocty pdf
- $\mathcal{E}^{(FD)}(\kappa, \tilde{\kappa}(\kappa, \alpha))$ is spectrum of truncation error for numerical method with modified wavenumber behavior $\tilde{\kappa}(\kappa, \alpha)$
- Define total discretization error

$$\mathsf{E}_{G}(\alpha) = \int_{0}^{\frac{\pi}{\bigtriangleup x}} \mathcal{E}^{(\mathsf{FD})}(\kappa, \tilde{\kappa}(\kappa, \alpha)) d\kappa$$

Optimized 5-point TCD stencil (second order)

minimal error stencil

Test I: Riemann 1D Wave Exact solution of 1D Euler

Hybrid WENO-TCD scheme

Test II; decay of compressible homogeneous turbulence

- 256³ DNS of compressible decaying turbulence. Fully resolved (R. Samtaney)
- 10-th order compact Pade scheme
- R_lambda ~70, M_t = 0.49 (shocklets in turbulence)

isosurfaces of |vorticity| (different levels)

36

Test I; decay of compressible homogeneous turbulence

Density slices. Shocklets (weak shocks) evident

DNS and LES of decaying compressible turbulence; decay of TKE

- M_t =0.488, R_lambda = 70.
- Black; 256³ DNS (10-th order Pade)
- Other; 32^3 LES
- Stretched-vortex SGS model

Hybrid WENO-TCD scheme

Stretched-vortices for SGS modeling

- Structure-based sub-grid-scale model for LES
- Uses stretched-spiral vortex as subgrid vorticity element
- 2-point SGS statistics known (spectrum, structure function)
- Uses second order velocity structure functions to dynamically determine model parameters
- Need model for SGS vortex orientations
- Good performance for standard LES tests; decaying turbulence and channel flow at moderate Reynolds number
- Extended to compressible flow
- Problems:
 - Each new/different SGS physics problem requires new analysis
 - Contains internal parameters (e.g. circulation etc.) not easily related to outer flow variables. Not needed for simple SGS momentum/scalar flux modeling but may be important for more complex SGS physics.
- Promise; may admit SGS extension of some turbulence statistics, i.e. multi-scale modeling; effect of Schmidt number

