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Overview

• LES of compressible, shock-driven turbulence
– Extension of SGS model to compressible flow
– Issues of numerical methodology
– Adaptive Mesh Refinement (AMR)

• LES of Richtmyer-Meshkov instability with re-shock
– Growth of mixing layer thickness
– Resolved-scale turbulence statistics
– Multi-scale modeling; subgrid extension of turbulence statistics
– Effect of magnetic field
– Cylindrical RM instability

• Near-wall SGS modeling
– No large eddies near the wall
– Local inner scaling and near-wall modeling
– Virtual-wall model
– LES of channel flow at large Re_\tau
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Favre-filtered Navier-Stokes equations

• Two-component Favre-filtered NS 
equations

• Filtering procedure strictly formal
– Not performed explicitly in  LES
– Guide to SGS modeling

• Favre-filtered quantities identified with 
resolved-scale quantities in LES

– Modeling assumption on par with 
SGS modeling

• Model subgrid flux of temperature as a 
passive scalar
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LES of compressible turbulence. LES and strong shocks (D. Hill).
Hybrid WENO-TCDS algorithm:

• Numerical methods for shock-capturing and LES `orthogonal’.
• Our solution: hybrid technique: blending Weighted Essentially Non-

Oscillatory (WENO) scheme with Tuned Centered-Difference (TCD) 
stencil.

• WENO in regions of very-large density ratio (Shocks)
– But WENO is not suitable for LES in smooth regions away from shocks.
– Upwinding strategy is too dissipative

• TCD stencil in smooth regions away from shocks
– Low numerical dissipation (centered method)
– optimized for minimum resolved-scale discretization error in LES 

(Ghosal, 1996)
– 5- or 7-point stencil trades off formal order of accuracy for small 

dispersion errors
• Target WENO stencil = TCD stencil
• In practice,  target TCD stencil not always achieved; switch is used 

based on acceptable WENO smoothness measure
• Hybrid method designed for LES in presence of strong shocks
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SAMR and AMROC (R. Deiterding)

• Structured Adaptive Mesh Refinement (SAMR)

• Adaptive Mesh Refinement Object Oriented C++ (AMROC)

• Berger & Colella’s algorithm for conservation laws of the form:

• Hierarchical data structure contains the solution vector  and fluxes

• On each patch, a standard Cartesian fluid solver is applied to 
march the solution (e.g. WENO/TCD)

• Boundary conditions and synchronization between patches is 
accomplished by filling ghost cells with interpolated data.

– ghost cell interpolation is an approximation for non-linear systems of 
equations
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Richtmyer-Meshkov (R-M)  Instability

Misalignment of contact
and shock

Advection

Barotropic vorticity Generation

Self-stretching and dilitation
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Richtmyer-Meshkov (R-M)  Instability

• Astrophysics:  A role in the description of the 
explosion of supernovae (Smarr 1981, Arnett 1989.)
– Supernova 1987A R. McCray (JILA)  Images from HST

• A role in Inertial confinement fusion design (Lund 1997)
– Laser pulse drives pressure waves

• Canonical example of shock-turbulence interaction

1996 1999 2001 2003
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Flow Description
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Shock tube, flow conditions (Vetter & Sturtevant 1995) 
and 1-D wave diagram
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2D-Richtmyer-Meshkov (R-M)  Instability
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Computational runs: unigrid

• Unigrid simulations
• QSC supercomputer (Los Alamos)
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LES of planar Richtmyer-Meshkov instability

• Vetter & Sturtevant (1995) RMI with reshock off end wall
• Air/SF6, Mach=1.5
• 3 levels of refinement

Mesh at one time Interface at one time

Wave diagram Mixing zone width
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LES of planar R-M instability; 

• Vetter  Sturtevant 
(1995) RMI with 
reshock off end wall

• Air/SF6, Mach=1.5
• 3 levels of refinement
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Growth of turbulent mixing zone

T = 0. ms T = 3.6 ms T = 10.0 ms
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Growth of turbulent mixing zone
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Kinetic energy in mixing layer
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Resolved-scale radial spectra in y-z plane
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Resolved-scale radial spectra in y-z plane

Radial spectrum of x-velocity, 
center of mixing layer 

Radial spectrum of density 
(solid) and mixture fraction, 

center of mixing layer 
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Subgrid continuation

β

αx e

r

• Stretched-spiral vortex SGS model used for subgrid
continuation

– Contains description of local anisotropy
– Computation of local and plane-averaged Kolmorogov scale η
– Parameters computed from LES (structure functions)
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Subgrid continuation of radial velocity spectra

• Radial (in k-space) velocity spectrum on center plane 
of mixing layer

– Resolved-scale spectrum (solid)
– Subgrid continuation   (dashed)
– Parameters computed from LES (structure functions)

• Subgrid velocity spectrum in dissipation range
– Log-linear scale
– Note exponential roll-off
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Subgrid continuation of radial velocity spectra.
Anisotropy of in-plane and normal velocity spectra

• Radial spectrum of u (top) and u+w (below)
– Resolved-scale spectrum (solid)
– Subgrid continuation   (dashed)

• Measure of anisotropy for radial velocity 
spectra

– Resolved-scale spectrum (solid)
– Subgrid continuation   (dashed)
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Subgrid continuation of scalar spectum in y-z plane

Resolved-scale and continued scalar spectrum in center y-z
plane, t = 10ms. Left to right,    Sc = 1, 1000, 1000,000

Scalar spectrum for 
stretched-spiral 

vortex

Pullin & Lundgren 
(2000)
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P.D.F. of mixture fraction with subgrid correction

P.D.F of mixture fraction in center y-z plane, t = 
10ms.  Resolved-scale and Sc = 1, 1000,000
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Suppression of RM instabilitySuppression of RM instability by Magnetic Field by Magnetic Field 
(V. Wheatley, R. (V. Wheatley, R. SamtaneySamtaney))

Vorticity (top) and ρ (bottom) at t =1.8, B ≠ 0, instability suppressed

Vorticity (top) and ρ (bottom) at t =1.8 , B = 0, interface unstable

• Suppression due to change in shock refraction process at interface when B ≠ 0 (Wheatley, Pullin & 
Samtaney, JFM 2004)

• Linear initial-value problem for impulsive acceleration of interface in presence of magnetic field 
solved exactly
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Analysis: Solution Features: PRL, 2005

Solution consists of:
• Inner region of rotational flow
• 2 small amplitude Alfvén shocks that 

carry circulation
• 2 outer irrotational regions
Notes:
• w*(0, t) is interfacial growth rate
• this decays to zero as Alfvén shocks 

propagate away
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Flow conditions and 1-D wave diagram (r,t)

Cylindrical RMI: Flow Description

Shocked Air
(Chisnell, 1998)

Unshocked Air

Unshocked SF6

x
z

y

Reflecting walls
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Cylindrical RMI; M0=1.3, 90 degree wedge (M. Lombardini)

Passive scalar contours & 
adaptive levels of refinement

• WENO-TCD with LES (SV model)
• Adaptive Mesh Refinement (AMROC) 

Ghost Fluid Method (inner and outer 
cylindrical boundaries)

• Initial conditions: 
– M0 = 1.3 or 2.0 or 3.0
– Air/SF6 (Atwood number = 2/3)
– “egg-carton” + smaller symmetry 

breaking perturbation with random 
phase

– Chisnell’s converging flow behind the 
shock wave

• Resolution:
– Base grid 83 x 83 x 51
– 2 additional levels of refinement
– Equivalent refined resolution 332 x 

332 x 204
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Growth of turbulent mixing zone (M0=2.0)

t = 0. ms

Initial condition

t = 1.45 ms

After first shock interaction

t = 5.13 ms

After first reschock
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Turbulent channel flow (work in progress)
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No large eddies near wall
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Near-wall filtering

http://torroja.dmt.upm.es/ftp/channels/

Streamwise and spanwise Gaussian filter

Wall-normal top-hat filter
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Local inner scaling

Law of the wall in a local sense

Local shear stress equation

Filtered streamwise momentum equation
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Fluctuating virtual-wall BC
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Extended stretched-vortex SGS model

LES decomposition

Dynamic alignment of subgrid vortices

Additional stresses from subgrid stretched-vortex wrapping axial velocity.
Pullin, D. I. & Lundgren, T. S. 2001 Axial motion and scalar transport in stretched spiral vortices. Phys. Fluids 13 (9), 2553-2563.
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LES coupled to wall closure

1) Time march local shear stress equation.

2) Obtain fluctuating slip BC from shear stress.

3) Time march filtered N-S with extended SGS model.

4) Time march dynamic subgrid vortex alignment model.
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Results (Retau = 600 to 60k)
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Reynolds stresses
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Future work

• Higher Reynolds number.
• Dynamic gamma from structure function matching.
• Application to flow over airfoil.
• Two-vortex SGS model to improve Reynolds stresses.
• Plug for related presentation:
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LES of turbulent channel flow; virtual wall model
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• LES of turbulent channel flow 
• Turbulent flow between two parallel plates driven by pressure gradient

– Flow contains many features of complex wall-bounded flows
– Viscous sublayer, stream-wise vortices, log layer

• Stringent test of SGS/LES model  for wall-bounded turbulence
• SGS model must accurately model turbulent transport processes
• Near-wall LES; frontier problem in present research
• Special ``virtual-wall’’ near-wall SGS model
• Allow LES of wall bounded flows at large Re_tau =20,000; Re_U = 650,000
• Comparison with DNS;
• Re_tau = 590 (Moser et al, 1999
• Re_tau  =2000(  Hoyas et al, 2006)
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Summary

• LES methodology
– Two-component Favre-filtered Navier-Stokes equations
– Stretched-vortex subgrid-scale (SGS) model; strucure based

• Computational method:  hybrid WENO-TCD
– Shock capturing low nunmerical dissipation
– Verification

• Decaying compressible turbulence
• Riemann 1D wave (Exact Euler)

• Large-eddy simulation of Richtmyer-Meshkov instability with reshock
– RM instability in plane channel with end wall; Air-SF6
– Modeled on experiments of Vetter & Sturtevant (1995)

• Traditional Statistics
– Mixing-layer growth
– Turbulence statistics, velocity, density & scalar spectra

• “Multi-scale modeling”
– Subgrid continuation statistics; spectra and anisotropy
– Scalar p.d.f.s, including subgrid contribution
– Effect of Schmidt number

• Adaptive Mesh Refinement (AMROC)
– Berger & Colella’s algorithm for conservation laws
– Hierarchical data structure 
– WENO-TCD and stretched-vortex SGS model implemented
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Conclusions

• Large-eddy simulation of plane Richtmyer-Meshkov instability with reshock
– Hybrid WENO-TCD scheme with SV SGS model
– Air-SF6; modeled on experiments of Vetter & Sturtevant (1995)

• Growth of mixing-layer width
– Initial linear growth of interface following first shock impact
– Period of nonlinear bubble/spike growth 
– Reshock produces rapid transition to turbulent mixing layer
– Strong mixing layer growth
– Enhanced by interaction with reflected expansion
– Eventual saturation of growth

• Traditional Statistics
– Mixing-layer growth
– turbulence statistics, velocity, density & scalar spectra

• “Multi-scale modeling”
– SV SGS model provides basis for subgrid continuation statistics; spectra and anisotropy
– Scalar p.d.f.s, including subgrid contribution
– log-dependence of scalar p.d.f. on Schmidt number
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Reynolds number and integral length

Decay on Reynolds number Decay of integral length
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Scalar spectrum from stretched-spiral vortex

Schematic showing winding of scalar 
field by `subgrid vortex’. 
Contours of  passive scalar
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Numerical algorithm (D. Hill, C. Pantano)

• Skew-symmetric 
– Energy conserving
– Satisfies summation-by-parts

• Tested in 1D, 2D, 3D
– Decaying compressible turbulence

• No explicit filtering

• WENO-TCD hybrid method (Hill & Pullin, JCP, 2004)
– Tuned-Centered Difference (TCD); away from shocks exploit smoothness of flow
– Order of accuracy traded for minimization of one-step truncation error in LES equations 

(Ghosal, 1995)
– 5-point stencil -> 2-nd order accuracy
– At shocks (only) revert to full WENO
– Optimal WENO stencil matched  to TCD stencil

• Flux-based finite difference
– Naturally integrated in AMROC
– Conservative,  skew-symmetri

Riemann 1D Wave 

Exact solution of 1D Euler
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• Finite-difference operator

• Tuned 5-point with parameter

• Tuned 7-point with parameter

Idea: Improve K(k) for  center-difference

α

α

α
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Performance for  LES of decaying turbulence

DNS and LES of Decaying compressible turbulence, M_t =0.488, R_lambda = 70.

Decay of total TKE.  Black;  256^3 DNS (10-th order Pade)
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Numerical algorithm (D. Hill, C. Pantano)

• Skew-symmetric 
– Energy conserving
– Satisfies summation-by-parts

• Tested in 1D, 2D, 3D
– Decaying compressible turbulence

• No explicit filtering

• WENO-TCD hybrid method (Hill & Pullin, JCP, 2004)
– Tuned-Centered Difference (TCD); away from shocks exploit smoothness of flow
– Order of accuracy traded for minimization of one-step truncation error in LES equations 

(Ghosal, 1995)
– 5-point stencil -> 2-nd order accuracy
– At shocks (only) revert to full WENO
– Optimal WENO stencil matched  to TCD stencil

• Flux-based finite difference
– Naturally integrated in AMROC
– Conservative,  skew-symmetri

Riemann 1D Wave 

Exact solution of 1D Euler
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Conservation and time adaptation

• Hanging nodes exist because cells at different levels are 
logically conforming 

• A special correction, fixup, must be applied to satisfy global 
conservation

• Fluxes at coarse cells next to fine cells are replaced by the sum 
of those fluxes at the fine cells

• This correction impacts the spatial as well as temporal 
integration scheme

• Ghost cell values of fine patches are obtained by linear time 
interpolation from the coarse patch solution 
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LES in the absence of strong shocks and density contacts

• The nonlinear term                       is responsible primarily  for the  energy 
cascade

• The most successful Eulerian methods are global
– Spectral
– High-Order Pade

• Good response across all (spectral) or most (Pade) of the resolved 
scales, I.e. modified wavenumber 

• Limitations of spectral methods: 
– global nature results in (fatal?) ringing at discontinuities like shocks 

and contacts 
– Limited to simple geometries
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Conservation and time adaptation

• Hanging nodes exist because cells at different levels are 
logically conforming 

• A special correction, fixup, must be applied to satisfy global 
conservation

• Fluxes at coarse cells next to fine cells are replaced by the sum 
of those fluxes at the fine cells

• This correction impacts the spatial as well as temporal 
integration scheme

• Ghost cell values of fine patches are obtained by linear time 
interpolation from the coarse patch solution 
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• Finite-difference operator

• Tuned 5-point with parameter

• Tuned 7-point with parameter

Idea: Improve K(k) for  center-difference

α

α
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Tuned Center-Difference Stencil (TCD)

• Error in resolved-scale energy spectrum produced by one step of 
Navier-Stokes equations using given discretization; Ghosal (1996)

• Asssume –
– Von-Karman energy spectrum
– Joint normal velocty pdf

• is spectrum of truncation error for numerical 
method with modified wavenumber behavior 

• Define total discretization error;
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Optimized 5-point TCD stencil (second order)

Truncation error Modified wavenumber of 
minimal error stencil
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Shock capturing solvers;  WENO

• True shocks have a thickness on the mean 
free path order

• The shocks are not resolved: Euler 
equations are solved in conservative form 

• Euler solver shocks are ‘captured’, I.e. 
smeared across a few cells – first-order 
accurate at shocks
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Hybrid WENO-TCDS algorithm: LES and strong shocks (D. Hill)

• Hybrid technique: blending Weighted Essentially Non-Oscillatory (WENO) 
scheme with Tuned Centered-Difference (TCD) stencil.

• WENO in regions of very-large density ratio (Shocks)
– But WENO is not suitable for LES in smooth regions away from shocks.
– Upwinding strategy is too dissipative

• TCD stencil in smooth regions away from shocks
– Low numerical dissipation (centered method)
– optimized for minimum resolved-scale discretization error in LES (Ghosal, 

1996)
– 5- or 7-point stencil trades off formal order of accuracy for small dispersion 

errors
• Target WENO stencil = TCD stencil
• In practice,  target TCD stencil not always achieved; switch is used based 

on acceptable WENO smoothness measure
• Hybrid method designed for LES in presence of strong shocks
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Cylindrical RM instability with AMROC (R.Deiterding)

• AMROC – Adaptive Mesh Refinement engine 
• Exploratory 2D Richtmyer-Meshkov instability with reshock in wedge geometry
• Passage of the shock results in vorticity deposition by means of baroclinic generation
• Canonical model of phase 2 experiments
• Incident shock modeled by Chisnell (1998) approximation to Guderley solution for 

similarity shock
• Euler simulation
• Initial density interface ; sinusoidal perturbation corresponding to n = 24 on circle

Schlieren Scalar

PressureRefinement
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• Planar hydrogen jet flame of Rehm & Clemens (1999), Mach=0.28
• 5 106 grid cells and 4 levels of refinement
• 128 processors at LLNL ALC, 50,000 cpu/hours
• Cantera chemistry solver by D. Goodwin for flamelet model

experiment simulation

Reacting Hydrogen Jet flame (C. Pantano)
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