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Fluid turbulence occurs when fluid motion is fast (large
Reynolds). It is characterized by :

• A complex (‘turbulent’) spatio temporal dynamics.
• The existence of a wide range of spatially excited

scales (… notion of scaling).
• Despite its complexity, turbulent flows exhibit well-

defined structures. Examples of vortex tubes :

Douady et al, PRL 1991



The scaling properties

dependence as a function
of r of the structure

functions :

→ Aim here : capture both aspects, by investigating multipoint
correlation functions.

Roughly speaking, most investigations of turbulence consider
separately either of the two aspects :

the local structure
(i.e., the

 geometry) of intermittent
regions in the flow (such as

vorticity filaments).



Objective of the work  :

Develop a theoretical understanding and a
description of the fluctuating velocity field that
captures both the scaling and structural aspects of
the flow.



An important remark :

To properly characterize the flow, focus on the full velocity
gradient tensor :

Or its coarse grained generalization :
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The evolution of the tetrahedron and M can be modelled by a
stochastic differential equation (Chertkov et al, 1999)
which we are studying directly.

Potential pay-offs :

 Fundamental information about the nonlinear processes
in the Navier-Stokes equations.

 Invitation to think about multipoint correlation.
  Get insight about the transfer process between scales

(Pumir et al, 2001, Bandi et al, 2006).
  Potentially, particle based LES (Shraiman et al, 2003).

      ~ new way to think about the turbulence problem
(a related approach : Chevillard + Meneveau, 2006, 2007)



M as a diagnostic of flow
topology

* The eigenvalues of M
characterize the local
topology of the flow.

* They depend (Cayley-
Hamilton) on the two
invariants :
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Outline of the presentation

• The stochastic M-model : derivation and definition.
• Semi-classical solutions of the model.
• Numerical solutions and comparisons with DNS with

an isotropic forcing.
• Numerical solutions in the presence of a large shear

flow.
• Recent experimental results and new questions.
• Conclusions and perspectives.



The stochastic model :

Derivation and definition



The stochastic M-model : derivation and definition (1)

• Write the Navier-Stokes equation for the velocity gradient tensor :

 Crucial ingredient : the pressure hessian

• Isotropic approximation (restricted Euler dynamics, cf Vieillefosse,
Cantwell) :

The resulting system can be completely solved, with the help of the
invariants Q and R (Q = -tr(m2)/2; R= -tr(m3)/3) :

                     -> Finite time singularity !
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Singularity of the restricted Euler
model

• Streamlines of the
vector field :

     dR/dt=Q2/2
     dQ/dt=-R/3

 Divergence along the
separatrix line

4Q3 + 27 R2 = 0



The stochastic M-model : derivation and definition (2)

• To go beyond the Vieillefosse singularity, one needs to introduce
the geometry of the Lagrangian set of points.

 Equation for the geometry, derived from :

Where :            = coherent component of the velocity field (k~1/R)
                          = rapidly fluctuation component (k >> 1/R).

                   = set of reduced coordinates, parametrizing the tetrad.

 Introduce the moment of inertia tensor :
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The stochastic M-model : derivation and definition (3)

• Equation for the coarse-grained velocity gradient tensor
(obtained from an approximation of the pressure Hessian, based
on analytical and numerical results) :

                                       « local » component of the pressure
                                        « non local » component of the pressure.
                                        fluctuating component

•  Reduction of the nonlinearity through the pressure Hessian : the
importance of this effect is measured by α
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The stochastic M-model : derivation and definition (4)

• One finally obtains the following system of stochastic differential
equations :

The effect of the noise in the g-equation is assumed to (mostly) restore
the isotropy of the g-tensor. It is substituted here by the β-term.

The noise η is modelled by a Gaussian white noise term, obeying the
K41-scaling (ρ2 = Tr(g)) :
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The stochastic M-model : derivation and definition (5)

• Summary : the model thus reduces to a set of nonlinear,
stochastic differential equations, with 3 dimensionless
parameters :

• Reduction of nonlinearity by the parameter α.

• Strength of the isotropy restoring term ( for the g tensor),
β.

• Intensity of the fluctuations in the M-equation, γ.



Energy balance

• Define the energy at scale ρ by E=Tr(VVt)/2 by   :
        Vi

a=ρi
aMba

Equation of evolution of the energy :

• Physical interpretation :
                                 : large scale energy flux

                                 : eddy-damping term

(see Borue and Orszag,1998, Meneveau and Katz 2000,…)
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The model provides a way to compute the statistical
properties of the M-tensor as a function of scale !

What is the qualitative behavior of the solutions of this
system of equations ?

N.b. : it depends on the three parameters : α, β and γ.



Methods of resolution

          of the system



The equation satisfied by the Eulerian PDF…

• A Fokker-Planck equation for the Eulerian PDF can be derived from
this stochastic system :

• The stationary solutions must satisfy the system :

                                                                   (Gaussian distribution at the integral scale)
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… and its solution in terms of path integrals

• The system can be solved using Green’s functions methods :

(G : Green’s function; P(M’,g’) : boundary condition)

With :

Hence :

                                                                  
                                                                             (Green’s function)           (boundary condition)
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Starting from an initial condition at the integral scale,
one integrates the system up to a fixed scale r (in the

inertial range). In principle, one has to integrate over all
trajectories in phase space.



(Approximate) method of resolution (1)

 One could use a straightforward Monte-Carlo method (exact in
principle)

Difficulty :

 the method is extremely inefficient, since one has to deal with
trajectories with widely different statistical weight (by orders of
magnitude !).

Obtaining reliable numerical results requires prohibitively large
computer time.

0th order approximation : look for deterministic solutions (γ=0)

 -> encouraging results when compared with DNS (Chertkov et al,
1999)



(Approximate) method of resolution (2)

 Use  here the  semiclassical approximation  (saddle point
approximation of the path integral)

Method : one considers only the trajectory for which the action is
minimal (the one with the largest statistical weight).

Hope : The method should provide important information, especially
since many trajectories do not contribute very much.

Drawback : the method is not rigorous; it is difficult to control the errors
made.

 => A better algorithm has to be implemented to understand the effect
of fluctuations (~Monte-Carlo), and to really estimate the errors
made by using the semi-classical approximation.



Numerical solutions of the system
in the semiclassical approximation

with isotropic forcing.

Comparison with DNS data

A. Naso and A. Pumir, Phys. Rev. E 72, 056318 (2005)



Scaling laws of the 2nd and 3rd order moments
of M :

DNS solutions (Rλ=130; 2563)
 According to the K41 scaling laws,                                  so

                             and
DNS results : these three quantities follow the expected

Kolmogorov scaling
! 

"u(r) # r
1/ 3

! 

M(r) " r
#2 / 3

! 

" 2
, Tr(S

2
) # r

$4 / 3
$Tr(M

2
M

t
) # r

$2



Evolution of P(R,Q) as a function of scale;
DNS solutions (Rλ=130; 2563)
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Model predictions

• The parameter that has the most
important effect on the solution is α 

(reduction of the nonlinearity).

• The predictions of the model agree with
DNS results provided α is in a narrow
interval around α ~ 0.5.



Scaling properties of the matrix M :
model results (1)
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The second moment of M has the right scaling provided
α is not too small !



Scaling properties of the matrix M :
model results (2)
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At small value of α, the strain grows with a power that  differs
significantly from 4/3
The ’reduction of nonlinearity’ should not be too small !



Scaling properties of the matrix M :
model results (3)
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The sign of <tr(M2Mt)> is negative, as it should, for small
values of α.
The ‘reduction of nonlinearity’ should not be too large !



Scaling properties of the matrix M :
model results (4)

Influence of the parameter β :

 Not much effect provided β is large enough.

Influence of the parameter γ :
Main effect : change the numerical value of
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Evolution of P(R,Q) as a function of scale;
semiclassical solutions of the model (1)
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Parameters : α=0.45; β=0.4; γ=0.25



Evolution of P(R,Q) as a function of scale;
semiclassical solutions of the model (2)
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Parameters : α=0.6; β=0.4; γ=0.25



Scale dependence of the energy transfer
density : DNS
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Scale dependence of the energy transfer
density : semiclassical solution
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Summary : acceptable values of α

The solution is acceptable provided a is in a
narrow interval around α ~ 0.4-0.5 !



Semiclassical solution : a
caveat

• What we have done :
determine the
optimal solution, and
ignore the
contributions of other
nearby trajectories.

• Effect of varying
vorticity around the
optimum : a better
calculation (~MC) is
necessary (A. Naso
et al, 2007).



Numerical solutions of the system
in the semiclassical approximation

with a large scale shear.

A. Naso, M. Chertkov and A. Pumir, J. Turb. (2006)



The issue of return to isotropy

• One of the postulates of turbulence theory is the
universality of small scale velocity fluctuations,
which implies that as the scale r diminishes, the
flow properties should restore isotropy.

• Study here an homogeneous shear flow.

• Nb : Experimental data (Shen and Warhaft,
2000) and numerical data (Pumir&Shraiman,
1995,1996) suggest that the return to isotropy is
much slower than naively expected.



The problem studied here

• The tetrad model can be used to study several kinds of forcing,
simply by changing the large scale condition.

-> impose a large scale shear, and calculate the scale dependence of
P(R,Q), and other quantities.

• Same equations as in the isotropic case; simply change the large
scale boundary condition :

Where :                                    ; s measures the shear intensity
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Scale dependence of P(R,Q) :
semiclassical solutions with s=0,1,6
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Parameters : α=0.6, β=0.4; γ=0.25



Scale dependence of <ω2> at
different values of s



Scale dependence of <Tr(S)2> at
different values of s



Scale dependence of the energy
transfer at different values of s



The issue of return to isotropy

• Our results are consistent with the accepted view that
the effects of large scale anisotropy decrease when the
scale decreases.

• New finding : difference of behavior between vorticity
dominated and strain dominated structures. The
anisotropy effects decrease faster for vorticity dominated
quantities (enstrophy) rather than for strain dominated
objects (strain, energy transfer).

• Faster relaxation of vorticity dominated quantities
towards isotropy may be consistent with the facts that
vorticity is found to be more intense, hence less sensitive
to the large scale forcing.



New experimental developments
and new questions.



Experimental results : pdf(R,Q)

H. Xu and E. Bodenschatz
Preliminary results

r0=25mm r0=20mm

r0=10mm

L=70mm; η=0.03mm



Experimental results :
Trajectories in the (R,Q) plane

Rλ = 690; r0=20mm H. Xu and E. Bodenschatz



Numerical results :
Trajectories in the (R,Q) plane

r0/L=1 r0/L=1/2

r0/L=1/8

Trajectories similar while r0 
 is in the inertial range !



Numerical results :
Trajectories in the (R,Q) plane

r0/L=1/32

r0/L=1/8

The character of the trajectories changes when r0 in 
 the dissipative range (here, η/L ~ 100) !

n.b. : Difference with Chevillard + Meneveau (2006,2007)



Model predictions :
Trajectories in the (R,Q) plane

Little dependence on 
space r0

Qualitative similarities.

Quantitative differences
 (alignment properties not 
 correctly taken into 
account)



Conclusions and perspectives.



Conclusions and perspectives (1)

• Our work is based on a dynamical model of turbulent velocity
fluctuations, that contains several key fluid mechanical ingredients.

• The model is formulated in terms of a stochastic differential
equations, that depend on 3 dimensionless parameters.

• The solutions have been obtained in the semiclassical limit, in two
cases.

       - isotropic forcing : comparison with DNS results shows the
important role of the nonlinearity reduction (role of the parameter
α).

       - anisotropic forcing : difference in the properties of return to
isotropy between vorticity dominated and strain dominated
structures.



Conclusions and perspectives (2)

• Easy to study the influence of boundary conditions at
large scales on small scales.

• In progress : development of an hybrid method that
incorporates more precisely the fluctuations in the
dynamics (… beyond the semiclassical approximation).
Expected output : find out about the importance of the
fluctuations as a function of the flow structures.

• Very recent development : new experimental results
from the Göttingen (also Zürich, Risø and Lyon) group
=>

            exciting new developments expected…
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