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introduction -

Objectives = Accurate measurements of VU and VZ by 2D optical diagnostics

Questions :

@ Interest of spatial gradient measurements ?
- Fundamental quantities in turbulence/combustion/mixing process ...

— dissipation, vorticity, ...
@ Are we able to measure scalar and velocity gradients ?

— Spatial resolution of such techniques vs. the different length scales ?
® Are the 2D optical diagnostics well adapted

for such measurements ?
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Why laser diagnostics for velocity and scalar gradient ? Photo: P.-E. Bengtsson

Introduction

-Non intrusive (or semi-intruive) : access and fluid perturbation
-High spatial resolution (up to 0.2 mm)

-High temporal resolution (~10 ns)

-Simultaneous measurements ( 2 scalars, velocity, ...)

-Large range of scalar measurements (Temperature,
concentrations : NO, acetone, radicals, ...)

- Visualisation of the flow motion l

Undisturbed pre- | Premixed flame

mixed flame disturbed by a
thermocouple

Simultaneous scalar and velocity fields
measurements in a turbulent jet
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Introduction : Which techniques ? _

Principle of laser diagnostics :

Measure > Analyse > Predict

- Technique -Post processing -Experimental results

- Operating conditions - Accuracy -Data bases
- - Flow phenomena

Chemical species

- Mixing process

- Radical species (OH, ..)
- Combustion products

Temperature
- Heat release

Flow field
-Flow motion

. Structure — Topolo
-Turbulence statistics pology

- fractal behavior

€« .

| - 3D
Ideal experiment: o {ime resolved Impossible!

= multiple quantities
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Introduction : Which techniques ? _

Velocity and scalar measurements :

= Particle Image Velocimetry (PIV)
= Planar Laser Induced Fluorescence (PLIF)

= Rayleigh Scattering

Main characteristics :

- Flow illumination (Laser)

- Interaction between light and particles or molecules (scattering process)
» Elastic scattering (Aipec = Aecat)

» Non-elastic scattering (A ,c < Agcat)
- Interaction with particles = Mie scattering (¢par > kinc)

- Interaction with molecules = Rayleigh scattering (¢pa. < Ainc)

FLOW SEEDING
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Introduction : Small scales _

Resolution requirement in fluid flows ?

Measurement probe :

- sufficient spatial resolution A, [¢—— 2D optical diagnostics

- sufficient temporal resolution ty

— Ag should be smaller than the “smallest scales” of the spatial fluctuations of
velocity and scalar

Classical approach : . ( V3 )1f4

Kolmogorov length scale A, = finest vorticity scale F T \<e>

Batchelor length scale A = finest concentration scale “ vD2 N\ /4
B = (< g >)

Finest scale = smallest scale at which velocity or scalar variation can

occur

Resolution requirements : Ay < A¢, Ag /B ,.F_Ks{:—lf’z

— restrictive conditions !
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A
k2.E(K)

Spatial scale of maximum dissipation

?

“Strain-diffusion” approach :

Inner viscous velocity scale A, =Ay . A« where A, is a constant J
Inner viscous scalar scale Ap=Ag . A; Where Ay is a constant

= Scales for which the action of mass diffusion (or viscosity) becomes
important

Smallest scale of which velocity or scalar gradient can be sustained (Buch and
Dahm, 1996 ; Su and Clemens, 2003)

With such approach : resolution requirements : Ay <2, Ap
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Ln E(k) 4 Typical energy spectrum
Energy 9
injection

Energy _
>
Energy Ln(k)
dissipation
3 limitations :

- Spatial resolution = decrease of scalar and velocity gradient
- Noise = increase of scalar and velocity gradient

- Derivative schema =noise addition ?
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Introduction : brawbacks and Cautions _

Measured signal
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Introduction : Contents and Objective_

@ Spatial velocity gradient measurements : PIV
- Principles and limitation of PIV technique
- Noise and spatial resolution estimation
- Derivative schema : optimization ?

- Accurate spatial velocity gradient measurement ?

‘ Spatial scalar gradient measurements
- Principles and limitation of PLIF and Rayleigh scattering
- Noise and spatial resolution estimation

- Optimal data filtering

@ lllustrations and perspectives
- Laminar flame thickness measurement

- Quantitative measurements of molecular mixing

- Strain tensor analysis by DPIV
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What is PIV ?
- PIV = Particle Image Velocimetry
- Two-dimensional and instantaneous measurement of flow velocity (u,v,w components)

Interests ?

-Large scale flow visualization (# 1D technique)

= Industrial burner (swirl), Flow motion in car
engine (tumble)

- Technological progress during the 1990’s
eLaser (ex : Nd:YAG)

Nombre de papiers sur la PIV

=Acquisition system (High speed camera
CCD, high resolution ~ 2k x 2Kk) ar s s oo o o e e oo o

<Data transfer and computing system Conference de Lisbonne: Annee

-Very easy to use and to obtain first velocity field ? International Symposium on Applications of
Laser Techniques to Fluid Mechanics (Lisbon)
(Not very true)

- Very popular technique

WA
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What do we need ? 2nd harmonic generator TR Po/ckels cell
_LASER (Nd:YAG) - flow illumination / /’ ;

« Pulsed laser : <10 ns

= Typical laser energy 100mJ/pulse
= Wavelength A= 532 nm (visible : green) ‘&'

= Two successive laser shots

I
I

adjustable mirrors

(— 2 spatially superimposed laser)

= Laser sheet by spherical and cylindrical lenses

- Seeding particles | N P \ =
I_-lght_ N 3 { A \ =1 _L__'i o
= micronical particles (solid, liquid, smoke, ...) ¢ ‘_,_.‘ ~ - |
= Compromise between drag/flow illumination ’f /
o ® /10 10um
— Stocks number << 1 du, 1gy (o ln N —
dt ppd? (ve-u) | |
PpYp Mie scattering

- CCD camera (Resolution, sensitivity, frame transfer, ...)
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PIV <P -

Pulsed Laser

A

t
- |
" I ......................... ./'/.

Particles images o

Camera PIV

double image

Seeding flow
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t t+At

U il
: ’//%M\\\“‘* =)

B
//////

3 =N G=mi=n)=] Cross-correlation on grey levels between

R(m,n) ="—2=M WG interrogation windows
I~J

COo i
WO RS AR W SR OTHERE D HREE




Small-scale turbulence : Theory, Phenomenology and Applications, Cargese, August 13th to 25th, 2007

Cross-correlation function :

- Statistical information on particles displacement in the whole interrogation window !!
# each particle displacement

&
t o .. t+At ﬁy

d |

PIV : Principles

&
=]

9
S

L
L=l

m (pixel)

-
o

i=N  j=M

'—ZN __ZM[I(iv .]) o 7] [J(i o mvj o n’) o ﬂ i '
R(m,n) ="—"— e et

= |(i,)) = grey level of the pixel (i,j) for the first image (time t)

= J(i,)) = grey level of the pixel (i,j) for the second image (time t t+At)
= |, J = mean value of grey levels for both images

= o;, 0; = grey levels r.m.s. for both images

20

= 2N, 2M = interrogation windows size, usually 2" (8-16-32-64-128 pixels?)
= Sampling process (cross-correlation coefficient — pixel)
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Cross-correlation fit

— 7 i AX . = 7.42 pixels
Mo, =7 pixels Moo P
@ Pic échantilloné (pixel)
1.0 1
— Pic interpolé (gaussienne)
0.9 -
0.8 |

AN A
0.6 \
0.5 4
0.4 1
0.3 /
= (Lt A =
S o 0.2 1
St ABNTZESNNYE
0 5 10 01 \
x (mm) — 2 pixels 0.0 —o—o—2<, e

. : . 01 2 3 456 7 8 91011 121314
(a) Sans sub-pixel (b) Avec sub-pixel X (pixels)

Interpolation function :

- Gaussian or parabolic (2D) or (2x1D)
- number of points: 3,50r7
- Influence on the displacement measurement (especially for small displacement ?)

Stronq influence on PIV noise !

L -
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Peak locking effect ?

rumber of wectors otal=5119)

»  Cross correlation function fit leads to a /\
bias (integer values of particles
displacement are privieged) ﬁl — o | _

» Role of particle image size (image p———————

quality 1)
» Howtoremove: '_ﬁ/l L L4—| D

- Particle image size > 2 pixels

- Iterative PIV with decreasing interrogation

windows size | Sample I'(n,m)

»  Effect on turbulence statistics estimation
I

(ex : artificial increase of u” and v’ by 10%)

W -
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lterative PIV (Windows Deformation Iterative Multigrid)
Lecordier et al., (2001), Scarano and Reithmuller (1999)

® o
e o ° "LO Classical PIV
o * °
° Window translated by the predicted
S Time t AL displacement
15t step

- Initial computation : predicted displacement (U,,V,)

- Windows translation

2nd step

- New computation : corrected displacement (U.,,Veor)
- Displacement (U, ,1,V;,1)=(Un.V)+ (UcorVeor)

Until (UgonVeon =(0, 0)

Including : vector validation during these steps and windows size decreasing
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PIV : Principles

Results (Assuming ideal particle images, PIV algorithm, ...)

4 impinging jets
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Beautiful velocity field !!!

g CNRS — UNIVERSITE et INSA de Rouen

BUT, what about :

- Spatial resolution ?
- Noise ?

- Velocity derivative
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Resolution requirement in fluid flows (less restrictive case)

Spatial resolution must be smaller than the smallest scale of which velocity gradient

can be sustained = strain limited vorticity thickness A, = 4-8 Kolmogorov scale (Buch and
Dahm, 1998)

LnE(k) 4 Outer scale > Spatial resolution Az > Ap/2

Effect of noise on Energy spectrum

Effect of under-resolution

>
-1
Outer scale My Ln(k)
Measured outer scale Outer scale
Dynamic Spatial Range (DSR) = = — (?)
Measured dissipative scale Dissipative scale A,
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@ CNRS - UNIVERSITE et INSA de Rouen

]




Small-scale turbulence : Theory, Phenomenology and Applications, Cargese, August 13th to 25th, 2007

Limitations :

- Noise (false vectors, peak locking effect, ...)

- Particle motion ~ fluid particle motion at these smallest scales ?

- Schmidt number of solid or liquid particles ? (Diffusion)

- Limited dynamic spatial range (Number of pixels of the CCD and
physical size of one pixel)

- Sampling effect

= particle seeding : minimum length scale =1 _>2d (d = mean distance between two particles)
= vector output : minimum length scale = | _>2A (A = mean distance between two vectors)

- Spectral response of PIV
= measurement of the response to an impulse signal or to a white noise
~ Response to a “zero” input signal in PIV (motionless record) = Transfer function

Transfer function

Model for energy spectrum : /

By (’é7)'é2) =E,, (’é/ﬂéz)-TF(’év’éz) + Ego\m (’éw'éz)
. Noise contribution (additive ?)

COo i
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PIV : spatial resolution

Transfer function (Foucaut et al. 2004)
-Model = “sinc” function E =E,
E. &,k
]F(/é7)/é2): Nozxe( 7 2)

0

-Low pass filtering effect (cut at —-3dB’

Kc.=1.4
K. =2.8/X
10
= Cardinal sine function
I —slope - 2
1
-3dB

0.1

(sinc k

0.045

0.01

0.001 i
i1 ko

Cut-off frequency

R A2k ’ -
u—% CNRS — UNIVERSITE et INSA de Rouen
RO SR 4 AROWEOCHEE

10°

2 E(f)(m’8?)

Small-scale turbulence : Theory, Phenomenology and Applications, Cargese, August 13th to 25th, 2007

X >

Physical space Fourier space

(o]

=2
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2 different spatial scales :
Outer scale : A, (resolved)
Cut-off scale : A, = (2rnX)/2.8 where X = window size (pixels)

— independent of window overlapping (sampling effect)

Spatial resolution close to A with moderate noise ... TE(k, k, ) = Ex ('éwéz)

0

Towards the estimation of E; . :

10

Epy ('é7)'é2) =E,, (’év’éz ) 'TF('év’éz) + ENie (’éw'éz) il

10" b

Inverse problem !

//\¥ _ E
‘@e (’éw’éz)@: EPIV (’éf)’é2)/IF(’é7”é2) _

?!5?'

Efk)
2

1w b

10 -
k. (pixel?)

"]-' 1 !
1w’ 10° w0*
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PIV
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Nosse -

Different noises :
- Instrumental noise : (SNR CCD, Analogical/numerical converter, ...)

- Physical noise. It comes from lighting (laser system, technology, ...), or from 2D
projection onto CCD plane

- Noise or “errors” linked to the sub-pixel estimation of maximum correlation

= Correlation peak fit

rumbear af wectors fotal=5119)

= Peak locking effect
— Minimized by the image quality

and the PIV algorithm

(Stanislas et al., 2005 and Europiv project)

- Problems coming from the flow and seeding :
= High velocity gradient within the interrogation window
= Particles coalescence

— False vectors (Validation step)

" -




PIV : Derivative filter

strain tensor, dissipation,

BUT :

Small-scale turbulence : Theory, Phenomenology and Applications, Cargese, August 13th to 25th, 2007

Derivatives of the velocity is of first importance in fluid dynamic (vorticity,

)

-Limited PIV spatial bandwidth

- Residual noise still present in the velocity field

Which is the best estimator for velocity derivative ?
Various derivative schema exist :

- Centred schema of order n

- Least square filter

- High order compact schema

TRANSFERT FUNCTION OF THE DERIVATIVE ESTIMATOR
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Methodology (example for centred schema of order n)

= / Zdi(%jﬂ'_”j—z')-'_

PIV : Derivative filter

%
Ox

HE

Ax"" O'u o,
Z @,
Ax

J

adx

=I,n/2

il Ox'|
J

i=n+1,00

Estimated derivative

Truncation error

Noise

function of the order!

TRANSFERT FUNCTION
o 0
poonl Jou
aX Esz. a‘xl True

W
= —— CNRS - UNIVERSITE et INSA de Rouen

RECHERCIE

Compromise between the truncation and the noise as a

—— 2nd onder
—— dih order
1324 —=— Bth order
—— Bth order
1 —— § podat cirevilation
o
038 { /78
i =3db
'I'r-
= 061 f
0.4 |
1 o, 3
J — 1 oy, WY
I R
n T T T T ;
0 0.5 1 15 2 25 1 x

kAx
= Cut-off wave number comparable to that of PIV

= 2"d order centred scheme is enough for a good

accuracy of the derivative
Foucaut and Stanislas (2002)
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PIV : Accurate spatial velocity gradient measurement ? _

Methodoloqy :

- Seeding optimization (density, homogeneity, S5,<<1, ...)

- Image quality (focus, distortion, particle image shape, background scattering, laser
profile, optimized interval time, ...)

- Iterative PIV algorithm with decreasing size

- Vector validation (false vectors, ...)

—Velocity vectors optimization = first condition

- Estimation of PIV bandwidth (outer range ., and cut-off scale 1.)

- Comparison of the cut-off scale with the smallest scale of the flow (strain limited

vorticity thickness A,)

- Derivative computation with a 2"d order centred scheme valid in the PIV bandwidth

Validation procedure : - DNS/PIV approaches. Lecordier et al., (2001)

s - Application in well known flows. Foucaut et al., (2004)

COo i
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PIV : conclusions on the technique _

Advantaqges :

- Two dimensional approaches, 2C or 3C (Stereoscopic PIV)
— Dual Plane Stereoscopic PIV

- Spatial statistics (No Taylor hypothesis)

- Very helpful for flow understanding (flow visualization)- Coherent view of the flow

Drawbacks :
- Limited bandwidth

- Poor spatial resolution. Strong limitation by particle seeding, interrogation windows,
noise

— Development of Super Resolution PIV (stitou et al., 2001)
- Limited temporal statistics (Laser frequency)

— High speed PIV (up to 10kHz)

Strong complementarity with hot wire measurements

L -
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Introduction : Contents and Objective_

@ Spatial velocity gradient measurements : PIV
- Principles and limitation of PIV technique
- Noise and spatial resolution estimation
- Derivative schema : optimization ?

- Accurate spatial velocity gradient measurement ?

‘ Spatial scalar gradient measurements
- Principles and limitations of PLIF and Rayleigh scattering
- Noise and spatial resolution estimation

- Optimal data filtering

@ lllustrations and perspectives
- Laminar flame thickness measurement

- Quantitative measurements of molecular mixing

- Strain tensor analysis by DPIV

LY -
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PLIF : Basic prncples -

Planar Laser Induced Fluorescence
= Species selective
= High detection sensitivity (ppm)
= 2-D measurements (or more with dual plane technique)
= Scalar = concentration or temperature
= wavelength shift of the fluorescence signal (Agyo > Ane)

Scalar : = specie present in the flow (OH, CH, ...) - PLIF (combustion studies)

= molecular tracer added to the flow (acetone, 3-pentanone, toluene, NO, ...)

— Tracer PLIF (imaging of scalar studies)

LIF signal
Definition : Fluore.sc.ence is the Excitation |
spontaneous emission of Excited level _~
radiation from an upper energy 4v\,
level which has been excited in Laser )) : v
some way (optically, thermally or ~ hv Ground level & ¥
chemically) Molecule, =0

Radical, atom

: -
L g CNRS — UNIVERSITE et INSA de Rouen
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PLIF : pasic prnciples -

Two Levels model
Radiative processes :

/ Wll
2
-Absorption (B,,Uv) \ Op
-Induced emission (B,;,Uv)
Bi2Uy B Uy Az Q21
-Spontaneous emission (A,;)
1

Non-Radiative processes :

- Internal transfers (K) = N,(t) = population density of the excited level
- Collisional quenching (Q,,) = N,(t) = population density of the ground level

- Photoionization(W,;)
Fluorescence signal collected :

(@D

Photon energy To solve ... Solid angle collection Volume measurement

Daily (1997) ; Kohse-Hoinghaus et al. (2002) ; Schulz et al. (2005)

R A2k ’ -
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Hypothesis :

- Laser irradiance — linear regime
- Energy measured constant in the measurement volume

0 A
S.=m,—1I'N,B,U, 21
4 ,t 0, +K

- Pumping time < laser pulse duration —» S; independent of time

Small-scale turbulence : Theory, Phenomenology and Applications, Cargése, August 13th to 25th, 2007

PLIF : sasc prncies -

How to quantify {,, ?

Molar fraction

SE(X,y)=1lo(X,¥,1) dV gy Ktnaceur (XY) P o(AT

A KT ,\

Local laser intensity

Fluorescence signal Fluorescence quantum yield

g

Absorption cross-section of the molecule

Measurement volume [cm?] Collection system efficiency

L -
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PLIF : Basic prncples -

Quenching effect

Generally Q,; >> A,;+K  — Quantum yield very small !!

— Decrease of detectability

AND, Q,; is mainly controlled by the local flow composition (Species i)

Q21 oC ZZI 'O-Seeder/i (T)

Example : Turbulent jet — Mean scalar concentration measured by PLIF on NO

yiD

N, T 0,
e . = N>/NO (300ppm) N,/NO (300ppm) N,/NO (300ppm)

AERFRCFESEATE 1 AR CHENE
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PLIF : Basic prncples -

Towards quantitative measurements by tracer PLIF ...
- Knowledge of the instantaneous and local composition of the flow for Q,,estimation ...

— Very difficult to implement
o _ (Lozano et al., 1992)
- Use of non-sensitive tracer to quenching effect

Q0 A
SF = /7‘/72 | L()szUv 2 K >> AL, +
4 A, +0, +K—/—" 21+ Qx

. o
Exemple : Acetone, 3-pentanone Alr i AlIr +3/oiacetone

Choice of scalar tracer :

- Strong fluorescence signal

- Absorption coefficient vs. laser wavelength available
- Temperature/pressure dependence

- Similar mass diffusivity than the flow

- Easy to use and not (too much) toxic product

- ... Air +3% acetone AiI

WA -
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RAYLEIGH SCATTERING : easicpincipies

Rayleigh scattering = Powerful diagnostic tool for the study of gases
— Scalar (concentration or temperature) measurements

Rayleigh scattering = Elastic interaction between electromagnetic wave
(laser) with molecules or small particles (d << )

Mechanism conceptually straightforward BUT features of the mechanisms of
the scattering are complex

“Simplest” approach = electric dipole radiation model

nucleus 7

Incident electric field :

X

Electronic cloud on
atomic orbital

—— Miles et al., (2001), Zhao et al., (1993)

COo i
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RAYLEIGH SCATTERING : sasic principies

Rayleigh scattering = Interaction between electric field and electronic
cloud

— small oscillating dipole

— electronic field propagating from this dipole (amplitude and intensity)

Non isotropic scattering

_>
Electric field E

Observation direction
(camera, PM)

Laser beam

L -
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RAYLEIGH SCATTERING : sasic principies

Ravleigh scattering signal :

0o
Sq (%,¥) =1 (X,Y,L).C.N(X,¥).D % (X.y) | =—
/ | *
7 ¥ A"
Laser intensity Molecule number for a Rayleigh scattering cross-
given point in space (X, y) section of specie i
v
Transmission factor : .
Mole fraction of specie i r—— Rayleigh cross-section

Gas species (% 10%® cm? ster ™)
I-I.yd.il'ogenl 1.1
5 Methane 11.6

2
0G 41 n, — 1 - 2 Ethylene 25.5
=— sin“(0)

GQ i 7\, N 0 Oxygen 4.4
w Nitrogen 5.1
/ Argon 4.7
short 2 faveurable el e
Laser wavelength Freon 22 59.5
Water vapour 3.8
Carbon dioxide 11.9
. . L Loschmidt number Carbon monoxide 6.8
Refractive index of specie i N o i

(Nbre of molecules/m3)
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Concentration measurement :

- Isothermal fluid

- Two species with strongly different crossections
present in the flow

Se (%.Y)=15(x,y,1).C,. Xl(%l (=) (2—3)2

Temperature measurement :

-T directly from the gas law: p=NRT, as Rayleigh
is proportional to N.

-Quasi-constant Rayleigh scattering cross-
section

1

S, (x,y)0 1, (x,y).Cp——
R (X y) (X y) T(X,y)

W -
—_——————"—— CNRS - UNIVERSITE et INSA de Rouen
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RAYLEIGH SCATTERING : Basic principles

Scalar concentration in a turbulent jet,
(Su et al., 2003)

wiInm)

bi
32 30 28 26 4

36 34 32 30 =%

¥ (mrn) (rnzm)

Laminar flame temperature,
(Lafay et al., 2007)
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RAYLEIGH SCATTERING : sasic principies

Advantaqges of Rayleigh scattering technique :

- Quite strong signal —» 2D measurements possible.
- No quenching dependence

- Signal intensity increasing with increasing pressure.

Disadvantages of Rayleigh scattering technique :

- Not species selective, it is impossible to separate between the different species
contributing to the signal.

-The signal is at the same wavelength as the laser, which makes the technique
very sensitive to scattering from optical components, or from particles such as
dust or soot.

-Mie scattering is about 1000 times stronger than Rayleigh scattering, so gases
must be filtered to remove particles. Scattering from optics or other surfaces must
be eliminated (Background light)
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PLIF / RAYLEIGH SCATTERING : Basic principies

What do we need ?

RAYLEIGH Scattering or TRACER PLIF : UV LASER (Nd:YAG, Excimer)
= flow illumination

* Pulsed laser : <10 ns N&YAG (532 nm output)

- Typical laser energy > 200mJ/pulse 32

= Wavelength A= 266, 355, 248,
308 nm(UV)

/
Slow-scan ICCD

camera w/
rejection filter and
Scheimpflug
mount

* Laser sheet

Cylindrical Lens

Spherical Lens

Intensified CCD camera or
very sensitive back illuminated
camera

Study zone

(Resolution, sensitivity, frame N&:YAG (266 nm output)

transfer, ...)
Experimental set-up for simultaneous measurements
of temperature and fuel mole fraction in laminar
flames (Degardin et al., 2006)
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PLIF / RAYLEIGH SCATTERING : Residual problems

Se(X.y) : Emitted signal n(x,y): Electronic noise
/\ | Sy(X,y)
v
\ Ii C : Measured signal
Laser beam AN ks &=
radR” Impulse response of the system h¢(X,y) l
S.s(X,y) : Background signal Post-processing (filter ?)
Modeling of measured signal : l
v Data reduction
(s (x,% hs () @ (x,yD s (X,Y) ®See (X,y)+N(X.Y) |
\v T —
Measured signal True signal Derivative filter
T — —— i
(o (x )= () €5, (x.y)) ny(x.)
~— ~—— Dissipation

Impulse response :

= spatial resolution effect
= must be in accordance with smallest scales to be measured

= Inverse problem ? .
Krawczynski et al., (2006); Wang et al., (2007)
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]




Small-scale turbulence : Theory, Phenomenology and Applications, Cargese, August 13th to 25th, 2007

PLIF / RAYLEIGH SCATTERING : Residual problems |\

Spatial resolution : Function Transfer Modulation (FTM) ; | l

1 Initial target

0
— = =3
3 [r— III EEIII;'.:‘EE- n=4 1

4= Il == UER

nm=o —l )
— R ded t t b |
5 = I" ecorae arge \\ i

_0 - - — I

s=m = ] e | |

USAF 1951 test target - ~. | ‘
(nbre of lines pairs per mm) 10% . i H, =

ik

Spatial resolution

Another approach :
-Edge response
-Derivative — Impulse response FTM = Tool to find the highest resolution
pattern where detall is visible

-FFT (Impulse response) — FTM

- Spatial resolution = 10% contrast
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PLIF / RAYLEIGH SCATTERING : Residual problems |\

Electronic noise : different sources
1) Fixed CCD pixel-pattern noise (removable by offset)
2) CCD readout noise (amplifiers on-board the CCD)

3) Image intensifier multiplication (electron avalanche noise)

— proportional to the local/pixel signal and some power of the intensifier gain

Noise dependent on signal level

— operate the intensifier/CCD

at as low a gain as is feasible.

Pixel value

4) Photon shot noise

Column number

— a finite number of particles that carry

energy(photons) is small enough to

0.06

%48mm f1.8
------- 92mmf4.2

""" Fita+ N°/N: a=-0.11, b=0.56 ]

give rise to detectable statistical fluctuations possr

°
=)
a

iy
0.045} i

in a measurement  Re /ative ervor = \/N/N

0.035f

— increase the number of photons

Relative Error RMS (N)/N
o o
o o
w S

0.025F

0.02f

0.015 s s s s
2000 3000 4000 5000 6000 7000

Gray Levels N
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PLIF / RAYLEIGH SCATTERING : Residual problems |\

Effect on scalar spectrum
=>» Cut off frequency f,

=» 2D scalar spectra with FFT routines
P =» Need to be filtered ?

=» cut along x or y direction

)
10° 10° 107 _ 10
i ~

f. (pixels?)
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PLIF / RAYLEIGH SCATTERING : Residual problems

Optimum data filtering (1)

Measured signal :
Su(XY)=hs (X, Y)®sc(x,y)+n,(xy) 2 Su(uv)
Design of an optimal filter (Wiener filter) : (I)(U,V)

Hs(u,v)®s.(u,v)+n,(u,v)

with an assumption : uncorrelated noise + H.=1 (Dirac function)

Filtered signal : %/((X,y) with  S'(u,v); g‘(u,v):SM(u,v).d)(u,v)

Optimal filter : \ :

2

‘Hs(u,v).S'(u,v)‘2 _ ‘SM (u,v)‘2 —‘N(u,v)‘

‘SM (u,v)‘2 ‘SM (u,v)‘2
~ Small scales modelling
‘S,\,,(u,v)‘2

o(uv)~

Krawczynski et al., (2006)
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PLIF / RAYLEIGH SCATTERING : Residual problems

Optimum data filtering (2)

Raw signal

g

¢

g 838 88

¢ 2 18 1 N5 lI] 0s 1 158 2

40
1000
500
20+ 800
700

> 40+
e 500
T 80 | w0
-80- 400
300

-100-
200
120 — b

140 .

yiD
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PLIF / RAYLEIGH SCATTERING : concluson

Advantaqges :

- Two dimensional approaches for scalar measurement
- Spatial statistics (No Taylor hypothesis)

- Very helpful for flow understanding (flow visualization)- Coherent view of the flow

Drawbacks :
- Limited bandwidth

- Poor spatial resolution. Strong limitation by finite size of the CCD, electronic noise,

- Data need to be filtered (optimal filter)

- Limited temporal statistics (Laser frequency)

Strong complementarity with one point measurements

(Cold wire, 1D Rayleigh scattering or 1D PLIF)

L -
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Introduction : Contents and Objectiv_

@ Spatial velocity gradient measurements : PIV
- Principles and limitation of PIV technique
- Noise and spatial resolution estimation
- Derivative schema : optimization ?

- Accurate spatial velocity gradient measurement ?

‘ Spatial scalar gradient measurements
- Principles and limitation of PLIF and Rayleigh scattering
- Noise and spatial resolution estimation

- Optimal data filtering

ﬂ lllustrations and perspectives
- Laminar flame thickness measurement

- Quantitative measurements of molecular mixing

- Strain tensor analysis by DPSPIV

LY -
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Application : Laminar flame thickness

PREMIXED COMBUSTION

- Key parameter in combustion (equivalence
ratio, fuel, pressure, temperature, strain...)

. g HNlemperature
Oxidizer

Reaction
rate

= Heat release ratio t=7-8, hundred chemical
reactions, heat and mass transfer ....

. Fitime propagation
- Thermal flame thickness : 0.1 to few mm

- Reaction zone flame thickness : 0.1x thermal d = te- Ty
thickness © T,

= Necessity to measure temperature gradient

Laminar, premixed and unstretched flame !

= Flame stabilized on heated rod

= Optical diagnostic = Rayleigh scattering

= Numerical solution with detalil Chemistry 10 20 30 40 50

x(mm)

V-shaped flame (Laser tomography)

WA -
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Application : Laminar flame thickness _

ENERGY EQUATION

SR v e

with for a one- dlmen3|o | flame: y{ou (kg /m? s) \

Heat release rate for each species |
Conduction  gpecies diffusion term

TB - TU
(NT )max
=» conditioned by conduction and heat release fluxes

Flame thickness 0 =

EXPERIMENTAL SET-UP

= Vertical open wind tunnel, mean flow velocity : 4m/s and u’=0.06m/s

= Rayleigh scattering, Nd-YAG laser 355nm, 230mJ/pulse

» |CCD camera Flamestar (LaVision), 384x286 pixel? , 12 bits

= Two different UV lenses : - 48 mm, /1.8, CERCO, Spatial resolution 270um
- 92 mm, /4.2, CERCO, Spatial resolution 167um

AR S50,
--lulll-nl




Application : Laminar flame thickness

Normalized Rayleigh signal

CO=Ia

30%H,, 70%CH,, $=0.7

47
45
43
41

39

y (mm)

37
35
33
31

36 34 32 30 28
X (mm)

UV lens: 48mmf/1.8

30%H,, 70%CH,, $=0.7

1.2»

Normalized Rayleigh signal

3

47
45
43
41

39

y (mm)

37
35
33
31
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0%H,, 70%CH,, $=0.6

36 34 32 30 28
X (mm)

UV lens: 48mmf/1.8

1.25

0.75

05F

0.25}F

30%H,, 70%CH,, $=0.6
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Normalized Rayleigh signal

30%H,, 70%CH,, $=0.5

47
45
43
41

39

y (mm)

37
35
33

31

32 30 28 26 24
X (mm)

UV lens: 48mmf/1.8

30%H,, 70%CH,, $=0.5

1.25

Normalized Rayleigh signal

y (mm)

30%H,, 70%CH,, $=0.4

47
45

43
41
39
37
35
33
31

32 30 28 26 24
X (mm)

UV lens: 48mmf/1.8

30%H,, 70%CH,, $=0.4
1.2 T T T T T
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Application : Laminar flame thickness _

UV lens f number | Magnification ratio | Spatial resolution | Noise level
92 mm 1/4.2 30 pixels/mm 270 pm High
48 mm 1/1.8 19 pixels/mm 167 KM Low

Main role of noise and spatial resolution

1.5 T T LJ L] T T T
48 mm UV lens: — GRI3.0 mechanism
] ) Lar | e Variable cross section (48mm lens) ]
If measured scale < 4.spatial resolution 13k N e Variable cross section (92mm lens) ]
. \ PY R
— Under-resolution phenomena Lol \ Validated measures |

— Over estimation of flame thickness

48mm lens:
<!

92 mm UV lens:

For low spatial gradient, main role of noise

Flame thickness (mm)
o
(o]

_ _ _ 0.8 -
— Under estimation of flame thickness
0.7 i
— Data filtering ?
0.6 -
A A
0.5 -
0.4} v .
i92mm lens
0-3 1 1 1 1 1 1 1 1 1
> 05 055 0.6 065 0.7 0.75 0.8 0.85 09 095 1
> Equivalence ratio

WA
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Application : Quantitative measurements of

Interest :

- Numerous applications for combustion process since chemical reactions occurs
when fuel and oxidant streams are mixed at the molecularly states

- Local composition of the flow : mixture fraction field Z(x,t) with e<Z<1-¢
representing mixed fluid for small values of «.

- Statistics of mixed fluids PDF(2)=f(x, Re, Sc, ...)

- Measurements require full resolution of time/space scales

- How to quantify the molecular mixing with under-resolved technique ?

Application : Turbulent free shear layer

U.=0.5(U,+U)
3(X)=r, o(X)-1o ,(X) = characteristic width of the flow

p X

cy

r,= location where U=U+a(U,-U)

COo i
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Application : Quantitative measurement_

Statistics :

- Instantaneous mixture fraction field Z
- Pdf of Z, P(2)

- Mixed fluid thickness fraction §,, = average molecularly mixed fluid fraction
across the mixing layer (mixing efficiency of the layer)

o, (x,5,Re _007_8
5 —_(‘; :!j P(Z,x,r)dZdr

Solutions :

-Flip experiment in reactive turbulent free shear layer (Kkoochesfahani et al., 1985)

-Dual tracer technique (king et al., 1997; Meyer et al., 2002)

L -
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Application : Quantitative measurements of_

Problem position : Passive scalar

- Acetone PLIF measurements : Sc(Z)
- Mixing layer geometry : 2 fluids
(Z=0 air and Z=1 air + %acetone)

- Ideal spatial resolution of 1 pixel

1 pixel on the CCD

S¢(2)=0,5 S¢(2)=0,5

- -
co g CNRS - UNIVERSITE et INSA de Rouen
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Application : Quantitative measurements of _

Solution : Dual tracer technique
- Highly quenched tracer PLIF : Nitric Oxide (NO), Q >> A+K

A
A+Q+K

- No quenched tracer PLIF : Acetone, K >> A+Q S, (X, y) oc 7

= Mixing between 2 fluids : (NO/N,) and (Acetone/air)

- Normalized fluorescence signal (Z,.)

Normalized fluorescence signal ()
_Normalized fluorescence signal for (1- Z,_)

SF(Ac,mix) _7
S - S Ac
F(Ac, pure)
-6,2 0 0;2 0;4 0;6 0;8 1 1;2 SF(NO,mix) Z
Acetone mole fraction ) = NO, pure
NO/N, - ~ 4 Acetone/air SF(NO,pure)
W ey Mixing layer

PRERFROTESHNIE § SROTENOTHEE
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Application : Quantitative measurements _
e I | | |
1 1 1 i

Mixed fluid fraction Z:

L=1- ZAc o ZNO,pure
,,,,,,,,,,,,,,,,,,, L_Acetone/air
Mixing efficiency :
Z
0<7n.., = <1
1-2,,

O

)

O

QO

=

-

o

¢

S S(Ac)=05 S{(Ac)=0,5 S{(Ac)=0,5
S{(NO)=0,5 S{(NO)=0,25 S¢(NO)=0
Z=0 7=0,25 7=05
M)mix:0 T]NOmix:015 NNOmix =1

AR S50, ’ -
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Application : Quantitative measurement_

Advantaqges :

- Towards a measurement of mixing state with sub-pixel resolution

- Differentiation between molecularly mixed state and small scale
convection

BUT : Drawbacks !

- Need high quality images without noise (difference operation for Z
estimation)

-2 limitations :

- Small local concentration of acetone mole fraction

- Finite spatial resolution at high Re

R A2k ’ -
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Application : Quantitative measurements o_

Assumption of cold chemistry not fully
true —» Qo hot infinite.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

NO signal is not completely
guenched even when molecularly

|
|
!
| [
mixed with the fluid2 ~~ N_ osp o X Acétone/air
| |
I
1
|
|

Cold chemistry fully valid :

S(Ac)=0,5
S¢(NO)=0,25

/=0,25 Correction : ZNO —-Z
TlNOmix=0,5 Z - ZNO'

NO,exp

ZNO - ZNo2Lev

What we really measure : 7 -05 M =0,25
S:(Ac)=0,5

Nomi = ™" 050,01

S;(NO)=0,25+0.05=0.255 - 025 ..
7=0,245 — 2% error (Higher for low acetone concentration) ™ 0,5
) _nNOmix:Ov49
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Application : Quantitative measurements of mol_

Turbulent jet : near field study (ing et al., 1999)

Rep, = 10.000

Acétone

+Air —[, |[*+— dy=5mm :
T Normalized Normalized 1 - Normalized 1 - Normalized
NO+N, S{(Acetone) =f;  S(NO)=f,, S.(Acetone)=f,, Si(Acetone)-
Normalized S.(NO)
f.os = total co-flow fluid fraction =7
foer = PUre jet fluid fraction

ftjet_ Total jet fluid fraction

= fmjer = Molecularly mixed fluid fraction = quantitative measurement of averaged molecularly
mlxed jet fluid fraction throughout the measurement volume imaged by a pixel

/f

Mixing efficiency n, = f tet

mjet

—> Observation of small amount of sub-resolution stirring detected
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Application : Quantitative measurements of _

Interest of dual-tracer technique :

- Radial profiles of averaged mixed jet fluid
fraction : f e

0.8

—Very small difference between the 2 methods

— Measurement of averaged fluid properties | B 06 [
quite accurate ks,
®

o4
- Radial profiles of probability of mixed jet fluid [
(instantaneous information) 02 fr
— Strong over-estimation of this PDF by passive [
scalar technique 0

— Consequence on the mixed fluid thickness
fraction §,,

= Passive scalar measurements give the probability that mixed jet fluid at any
concentration will occur in the measurement volume

= Dual tracer technigue may be possible the extraction of fluid element
molecularly mixed in the volume element.
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Application : Estimation of strain tensor b

DPSPIV = Dual Plane Stereoscopic PIV

— 3 velocity components for two planes separated by Az

— Estimation of full strain rate tensor without assumptions

Technique | Velocity Components | Vu Components | Dynamical Quantities
= Sppy =
PIV i, o o Exy
G du
G Ay s
du S
drt dy -
D e
Stereo PIV (TR T 7 Ty Ery
Juw  dw We
dr* dy
Epzs Egys Ezz
a_ﬂ E_ﬂ @ :Fﬂ'y' Eyz. EET
dax’ Ayt Oz W o Lhor L)
Dual-Flane ., v, w(x) du v "-TT e
Stereo PIV w, v, w(x + dx) Or* Gy* Oz “ulxt)
duw  dw Wil
dz® Ay Oz
Lefj Ej_iiu,'_ii(x. |r:|
2 Eiji_;I:X. (i
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Application : Estimation of strain tensor b_

Stereoscopic PIV : principle

True
displacement

Displacement
seen from left

Displacement Focal plane =
seen from right Centre of
light sheet
R4 LRGN
0‘00/’ -7 “‘:\ts’
AR RS
R AN
R RN
27 Y
' - >
P Left Right 9
R4 camera camera N
,/‘c ”,‘

True 3D displacement (AX, AY, AZ) is estimated from a pair of 2D
displacements (Ax, Ay) as seen from left and right camera
respectively

L -
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Application : Estimation of strain tensor by DPS_

Dual Plane Stereoscopic PIV : principle

’.:' D}rc
4 Nd: YAG Lasers Lasers

BPC BSI

Cautions :

- Sheet alignment and accuracy on Az

| - Cost (4 lasers and 4 cameras .. !)
‘ —> ~ 450 k€
I f’:'l - Implementation not easy
M2 I BS3 - Do the results better help to understand
| the flow ? — appropriate use
M8 M7
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Application : Estimation of strain tensor b_

Strain tensor measurement in a low-turbulent jet (Mulin et al., 2006a ; Muliin et al., 2006b)

Operating conditions :

% - f - Re;=6.000 Re, = Uo
b e - x=17cm 4
e -U.=1.2m/s
! . : _ —-3/4
A y - Field of view (15.5x12.5 mm?) A, = A0 Re;
- Outer scale = d(x)=7.4cm
- Inner scale = A, = 1.24 mm 300 w/(v/h) 300
N - Spatial resolution = 1.4 mm [ |
7 -0.26 u, [ u, 0.26
u(x,t) v(x,t) w(x,t)
Intensity 400um
A >

/532 nm

Az <

. 635 nm

200 400 600 800 1000

R A2k ’ -
u—% CNRS — UNIVERSITE et INSA de Rouen
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Laser sheet (um)




u(x,t)

8/ox
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[ |
163 dw/0m geq
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Optical diagnostics are powerful tools for flow understanding and analysis.
BUT, strong limitation by their limited band-width

Necessity to use with other measurement probes (1D) highly spatially or
temporally resolved (HWA ...)

- Luminita Danaila

- Guillaume Boutin
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