Clustering of heavy particles and ions in MHD turbulence

Jérémie Bec, Holger Homann

Laboratoire Cassiopée CNRS, Observatoire de la Côte d'Azur, Université de Nice

Horst Fichtner and Rainer Grauer

Theoretische Physik Ruhr Universität, Bochum, Germany

Particle laden flows

Finite-size and mass impurities transported by turbulent flow

Heavy particles

Charged or uncharged spherical particles much smaller than the Kolmogorov scale η , much heavier than the fluid.

$$\begin{cases} \frac{d\vec{X}}{dt} = \vec{V} & \tau_s = 2\rho_p a^2 / (9\rho_f \nu) \\ \frac{d\vec{V}}{dt} = -\frac{1}{\tau_s} [\vec{V} - \vec{v}(\vec{X}(t), t)] + q\vec{V} \times \vec{B} & \text{St} = \frac{\tau_s}{\tau_\eta} \end{cases}$$

- $\vec{B} = 0$ \vec{v} solution of Navier-Stokes
- $\vec{B} \neq 0$ \vec{v} and \vec{B} solutions of the equations of incompressible MHD

Aims:

- * Understand differences with hydrodynamical flows (structures where particles cluster or are ejected from).
- * Understand the effect of charge on the particle concentration properties

Clustering

Important for

- * the rates at which particles interact (collisions, chemical reactions, gravitation...)
- * the fluctuations in the concentration of a pollutant * the possible feedback of the particles onto the fluid
- Phenomenology: different mechanisms

Dissipative dynamics ⇒ **attractor**

Ejection from eddies by centrifugal forces

⇒ concentration in **straining regions**

Clustering in hydrodynamics

Inertial-range clusters and voids

Multifractal distribution at dissipative scales

Small-scale clustering

 $P_2(r)$ = Probability that two particles are within a distance r **Correlation dimension** $\mathcal{D}_2 = \lim_{r \to 0} d_2(r), \quad d_2(r) = \frac{\mathrm{d} \ln P_2(r)}{\mathrm{d} \ln r}$ 3.1 3 2.9 2.8 2.7 5 2.6 2.5 Navier-Stokes 2.4 MHD 2.3 2.2 2 3 4 5 -N 6 St

Inertial-range concentrations

Real flow have structure and particle distribution correlates with the acceleration field

Ejection dominates

Model: at each time step some (randomly chosen with probability p) cells eject a fraction of their mass to their neighbors. Parameter = γ ejection rate

Inertial-range distributions in MHD

Uncharged particles concentrate in the neighborhood of current sheets

Inertial-range mass distribution

Correlation with the fields

Conclusions and Perspectives

- Strong correlation between the particle distribution and the more violent structures of the flow. Can be used to give insight on the flow structure?
- Understand the mechanisms responsible for large mass fluctuations in MHD. Simple models?
- Rescaling of the mass distribution in MHD as a function of τ_s and r, as that observed in Navier-Stokes?
- Effect of electrical interaction between the charged particles?