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Spatial distributions of heavy neutral and charged particles in incompressible, resistive magneto-
hydrodynamic (MHD) turbulence is investigated by means of high-resolution numerical simulations.
Strong deviations from homogeneity are observed at dissipative as well as inertial range scales. Neu-
tral particles tend to cluster in the vicinity of coherent vortex sheets with an exponential tail of the
coarse grained density for high density values. The signature of clustering is different for charged
particles. The regions of spatial inhomogeneities change due to attractive and repulsive vortex
sheets, the clustering increases by increasing the charge and the right tails of the coarse grained
PDF are shallower than exponential.

PACS numbers:

I. INTRODUCTION

Introduction!!!
Relation to astrophysical problems, Tokamak ???
Sheds light on the distinct role of the coherent structures
in turbulent flows.
Introduction to clustering in Navier-Stokes turbulence

II. METHODS

The simulations are carried out using a pseudo-spectral
solver. The code solves the magnetohydrodynamic
(MHD) equations

∂t"ω = ∇×
[

"v × "ω − "B × (∇× "B)
]

+ µ∆"ω, (1)

∂t
"B = ∇× ("v × "B) + ηd∆ "B, (2)

∇ · "v = 0, ∇ · "B = 0, (3)

"v denoting the velocity field, related to the vorticity by
"ω = ∇ × "v, and "B the magnetic field which is given in
non-dimensional multiples of a reference Alfvén speed.
µ, ηd are the kinematic viscosity, magnetic diffusivity,
respectively.

The underlying equations are treated in Fourier-space,
while convolutions arising from non-linear terms are
computed in real-space. A Fast-Fourier-Transformation
(FFT) is used to switch between these two spaces. The
time scheme is a Runge-Kutta of third order [1]. The
inter-process communication uses the Message Passing
Interface (MPI). The main parameter of the simulation
are given in Tab. I.

We introduced three different types of particles into the
flow. The first kind of particle can be seen as a marked
fluid element, called tracer particle, which exactly follows
the fluid dynamics. It evolves according to

d "X

dt
= "v. (4)

Here, "X denotes the particle position at time t and "v is
the surrounding velocity field given by the solution of the
MHD equations (1–3).

The second type of particle is a small spherical particle
much heavier than the fluid. In very dilute suspensions
the trajectory X(t) evolves according to

d "X

dt
= "V ,

d"V

dt
= −

1

τs
["V − "v( "X(t), t)]. (5)

"X(t) denotes the particle position, "V (t) its velocity,
"u("x, t) is the fluid velocity and τs = 2ρpa2/(9ρfν) is the
particle response time, where a is the radius and ν the
fluid viscosity.

The third type of particle is a heavy particle like the
second type, but with a charge different from the plasma.
These particles feel in addition to the viscous drag the
Lorentz force,

d "X

dt
= "V ,

d"V

dt
= −

1

τs
["V − "v( "X(t), t)] + q"V × "B. (6)

where q denotes the charge per mass. We only take the
magnetic part of the Lorentz force into account, because
of the fact that a plasma is quasi-neutral and the electric
field arises solely from the resistivity. As this is very
small in many physical situations we neglect this term.

We introduced 106 particles of each spezies homoge-
neously into the statistically stationary flow. After a pe-
riode of relaxation we integrated the particles for 2.4TL.

In order to obtain the velocity and magnetic field at the
particle position from the grid values we use a tri-linear
interpolation. This interpolation scheme parallelizes effi-
ciently and provides sufficient accuracy [2] for the statis-
tical properties under consideration.

III. CLUSTERING

The dynamics of tracers is volume-preserving in in-
compressible turbulence. Therefore, the corresponding
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Clustering

Phenomenology: different mechanisms

Ejection from eddies by centrifugal forces

           ⇒ concentration in straining regions

Dissipative dynamics
⇒ attractor

Important for
the rates at which particles interact (collisions, chemical 
reactions, gravitation…)
the fluctuations in the concentration of a pollutant
the possible feedback of the particles onto the fluid



Clustering in hydrodynamics

Inertial-range clusters and voids
Multifractal distribution
at dissipative scales
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left and right tails with exponent α. Both tails are de-
picted in Fig. 2, where the inset shows that the numerical
measurements are in good agreement with the predicted
value of α. The relation between α and the Hölder ex-
ponent h implies in particular that α = 3 in the smooth
case, while it increases with decreasing h. Moreover, it
follows straightforwardly from (8) – (10) that during the
loops ρ(t) ∝ ρ(t0)h when ρ(t0) " 1. Hence it becomes
less and less probable to reach smaller values of ρ as h
decreases. In other words, particle clustering should be
very strong for smooth flows and becomes weaker when
the flow roughness is increased. This prediction is con-
firmed by the numerical studies presented in next Sec-
tion.

Finally it should be pointed out that although the
change of variables (5) – (7) can be applied equally in
three dimensions, the above analysis does not carry over
to higher dimensions. Firstly, as already pointed out,
an additional drift term arises. This Itô-term renders
a straightforward derivation of an analytic solution for
the deterministic drift impossible. Secondly, for higher
dimensions the fixed point of the reduced dynamics is
located far from the origin, see [16]. Hence the approxi-
mations made above for d = 2 are not applicable. Careful
numerical studies are needed to understand whether or
not algebraic tails are also present in higher dimensions.

III. CORRELATION DIMENSION AND
APPROACHING RATE

Particle clustering is often quantified by the radial dis-
tribution function g(r), which is defined as the ratio be-
tween the number of particles inside a thin shell of ra-
dius r centered on a given particle and the number which
would be in this shell if the particles were uniformly dis-
tributed. This quantity enters models for the collision
kernel [17]. Following [10, 13, 16, 18], we consider a dif-
ferent, but related way to characterize particle clustering.
Instead of the radial distribution function we evaluate
the correlation dimension D2 of the set formed by the
particles. This dimension is widely used in dissipative
dynamical system theory and in fractal geometry (see,
e.g., [19, 20]). It is defined as the exponent of the power-
law behavior at small scales of the probability P2(r) of
finding two particles at a distance R<r:

D2 = lim
r→0

d2(r), d2(r) =
d lnP2(r)

d ln r
, (13)

where the logarithmic derivative d2(r) is called the local
correlation dimension. D2 relates to the radial distribu-
tion function via ln g(r)/ ln r → D2−d for r→0. For uni-
formly distributed particles, D2 =d, so that g(r)=O(1).
On the contrary, when particles cluster on a fractal set,
D2 <d and g(r) diverges for r→ 0. This was also found
numerically in [17].

Depending on whether the carrier flow is spatially
smooth (h = 1) or rough (h < 1), D2 and d2(r) behave

differently. In the former case, random dynamical sys-
tem theory [21] suggests that within the 2 × d position-
velocity phase space, particles converge onto a multifrac-
tal set with correlation dimension 0 < D2 < 2d. Here
D2 denotes the correlation dimension in the full phase
space. It is defined in complete analogy to D2 through
the scaling behavior of the probability P 2(r) to find two
particles at a distance less than r in phase space:

P 2(r) ∼ rD2 for r → 0 . (14)

The distance r is now computed by using the phase-space
Euclidean norm

√

|R|2 + |V /D1|2; V is normalized by
the typical fluid velocity gradient D1 for dimensional rea-
sons. The physical-space correlation dimension D2 is ac-
tually the dimension of the projection of the set from
the full phase space onto the position space, and it is
also expected to be fractal (see Section VII for details
on the relation between D2 and D2). We focus in this
Section on quantifying clustering in position space and
hence consider only D2 and d2(r).

Balkovsky et al. argued in [43] that particles do not
form fractal sets in non-smooth flows because the cor-
relation function of the particle density field should be
a stretched exponential. Clustering and inhomogeneities
are hence not quantified by a fractal dimension but by the
detailed scale dependence of d2(r). However, as discussed
in the Introduction, one expects the statistical properties
of two particles separated by a distance r in a flow with
Hölder exponent h to depend on the local Stokes number
St(r)=D1τ/r2(1−h) only, which for smooth flows degen-
erates to a scale independent number, St(r)= St= D1τ .
In rough flows, at scales small enough, particles move bal-
listically and distribute homogeneously as the Lagrangian
motion is too fast for the particles to follow (St(r)→∞
as r→0) and hence D2 = d for all particle response times
τ . However, information on the inhomogeneities of the
particle distribution at larger scales can still be obtained
through the scale-dependence of the local correlation di-
mension d2(r) defined in (13).

The relevance of the local Stokes number and of the
local correlation dimension is confirmed by numerical ex-
periments of planar suspensions. Simulations were per-
formed by directly integrating the reduced system de-
scribed in previous Section. Figure 3 shows d2(r) as a
function of St(r) for various values of h. The curves ob-
tained with different values of the response time τ col-
lapse onto the same h-dependent master curve once the
scale dependency is reabsorbed by using St(r). In the
plot, only scales far from the boundaries were considered,
as otherwise the self-similarity of the fluid flow is broken.
The data for h = 1 estimate the limit of d2(r) as r→ 0,
and so correspond to the value of the correlation dimen-
sion D2. As anticipated in the previous Section, Fig. 3
also shows that clustering is weakening when the rough-
ness of the fluid velocity increases (i.e. when h decreases).
In particular, minr{d2(r)} gets closer to d, i.e. particles
approach the uniform distribution as h → 0. Finally no-
tice that for St(r) → 0, i.e. at large scales in rough flows,
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         = Probability that two particles are within a distance
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Ẋ ≈ v(X, t) − τs Dtv(X, t)

Inertial-range concentrations
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Modulus of 
acceleration 

Real flow have structure and particle distribution correlates with 
the acceleration field

Consequence of Maxey’s approximation
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Poisson

Algebraic tails 
(signature of voids)

p(ρ) ∝ ρ
α(τ,r)

τ ↓

Tails in

JB, L. Biferale, M. Cencini, A. Lanotte,  
S. Musacchio, and F. Toschi, PRL 2007

Hydro



p(ρ) ∝

{

ρ
α(γ)

ρ → 0
e−C(γ)ρ ln ρ

ρ → ∞

Ejection dominates

γ

Model: at each time step some (randomly chosen with 
probability    ) cells eject a fraction of their mass to their 
neighbors. Parameter =      ejection rate 

JB, R. Chétrite, New J. Phys. 2007

p

This model gives (analytically) the same tails
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Reλ vrms Brms εk εm ν = ηd dx η τη L TL N3 Np

100 0.073 0.14 5.6 · 10
−4

8.6 · 10
−4

5 · 10
−4

2.45 · 10
−2

2.2 · 10
−2

0.94 2.7 17 256
3

10
6

TABLE I: Parameters of the numerical simulations. Re: Taylor-Reynolds number
√

15V L/ν, vrms root mean square velocity
√

2/3Ek, Brms root mean square magnetic field
√

2/3Em, εk: mean kinetic energy dissipation rate, εm: mean magnetic energy

dissipation rate, ν: kinematic viscosity, ηd: resistivity, dx: grid-spacing, η: dissipation length scale (ν3/ε)1/4, τη: Kolmogorov
time scale (ν/ε)1/2, L = (2/3E)3/2/(εk+εm): integral scale, TL = L/urms: large-eddy turnover time, N3: number of collocation
points, Np: number of particles

density distribution remains of Poisson type throughout
the whole simulation .

In contrast to tracers in the simplest model heavy
particles interact with the surrounding fluid by viscous
drag. Their dynamics lags behind that of the fluid and
is not volume-preserving as in the case of tracers. At
large times, particles concentrate on singular sets evolv-
ing with the fluid motion, leading to the appearance of
strong spatial inhomogeneities dubbed preferential con-
centration. In this work the properties of clustering of
neutral as well as charged particles will be investigated.

A. Neutrals

First we will focus on the properties of clustering of
neutral heavy particles in MHD turbulence. The sur-
rounding fluid only acts on them by viscous drag. Neu-
tral heavy particles are evolving according to (6) and
we are in a similar situation such as for heavy particles
in hydrodynamic turbulence. The latter is governed by
the Navier-Stokes equations. For this type of flow sev-
eral works have been devoted to the characterization of
small-scale and inertial range clustering.[3? ]. An im-
portant role is played by the vorticity filaments. Heavy
particles in the neighborhood of such a coherent struc-
ture experience the centrifugal force (see Fig. 1). As a
consequence the particles are driven away from rotating
regions and tend to form clusters in hyperbolic regions.
The flow structure of a conducting fluid is different. In

MHD turbulence one encounters current-and vorticity-
sheets instead of filaments [4]. To get a first impression
of the influence of the coherent structures on the regions
of clustering in MHD Fig. 2 shows vorticity sheets and
particles in a thin slice. Strong spatial inhomogeneities
are observable. These are clearly related to the presents
of structures. But in contrast to hydrodynamic turbu-
lence particles are not preferentially driven away from
the sheets. One observes clusters which are elongated
along the vorticity sheets. As the velocity field on the
surface of a sheet is parallel to the sheet particles ap-
proaching a sheet will be guided along it. The particles
do not cluster entirely in the neighborhood of the sheets
for several reasons. First because tracers and also par-
ticles are not trapped in the vicinity of these structures
but leave them easily at the edges[5]. Second because of
the finite lifetime of these structures and third because

FIG. 1: Isosurfaces of vorticity (green) and particles (red) in
a slice

FIG. 2: Particles in hydrodynamic turbulence

of the delay between the fluid and particle dynamics.

Looking at the PDF of the absolute value of the vor-
ticity |ω| sampled from the particle positions in Fig. 3
reveals that the vorticity is indeed increased compared to
homogeneous sampling. In average one encounters higher
values of vorticities at the heavy particle positions than
at the tracer positions.

Inertial-range distributions in MHD

Uncharged particles concentrate in the neighborhood of current 
sheets
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1. Small-scale clustering

In order to characterize clustering at dissipative scales,
we measured the correlation dimension D2, which is esti-
mated through the small-scale algebraic behavior of the
probability to find two particles at a distance less than a
given r: P2(r) ∼ rD2 .

...

2. Inertial-range clustering

From inspection of Fig. 2 it is clear that the size of the
voids span from dissipative to inertial range scales. To
quantify this observation Fig. 4 and Fig. 5 show coarse
grained PDFs of neutral particles for several Stokes num-
bers. The box size is 18η. One observes strong deviations
from the Poisson distribution.
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The right tails decrease exponentially. This is in con-
trast to the coarse grained PDF of heavy particles in
Navier-Stokes turbulence. There, the decrease is clearly
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faster than exponential [? ]. This exhibits a difference in
the mechanism of clustering and might be traced back to
the distinct role of the coherent structures.

The left tails show a nearly algebraic behavior. Values
???.

The second order moment of the coarse grained density
PDFs (see 6) shows a steep increase from 0 to 1 and a
maximum between 1 and 6. Beyond 6 it decreases that
one can expect a homogeneous distribution in the limit
of infinite Stokes number.
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B. Ions

Now in addition to viscous drag 1

τs
["V − "v( "X(t), t)] the

additional force q"V × "B is taken into account.
The inspection from eye of Fig. 7 yields that the

shapes and locations of the clusters changes by adding the
Lorentz-force. This means that Lorentz-force agglomer-
ates the iones and counteracts the clustering from viscous
drag. In addition the clustering is stronger than for neu-
tral particles. This observational result will be confirmed
at small and inertial scales in the following paragraphs.
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A clustering mechanism is present
(not only fluctuations in an ejection process)
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Effect of charge 4

FIG. 7: Sample of neutral (red) and charged (blue) (q = 1)
particles for St = 1, projection of the entire domain

1. Small-scale clustering

As in the case of the neutral particles we computed the
correlation dimension D2 for the charged particle distri-
butions.

...

2. Inertial range clustering

Looking at the coarse grained PDFs in Fig. 8 and 9
reveals a stronger clustering of the charged particles also
at inertial range scales. The right tails are less steep than
exponential. Remark that we found clearly steeper right
tails for neutral particles.
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Again the left tails show algebraic scaling. For large
scales one observes positive slopes. This is indicating a
non-zero possibility of completely empty regions.

These observations show confirm that the clustering
due to the Lorentz-force is of completely other type than
due to the viscous drag.
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The second order moment of the coarse grained PDFs
is shown in Fig. 10. A sharp transition for charges be-
tween 1 and 3 takes place. For these charges the Lorentz-
force starts to win over the drag force. For large charges
the degree of clustering seems to saturate.
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FIG. 10: Second order moments of coarse grained PDFs

Now we will figure out the regions of clustering for
high particle charges. There are attractive and repulsive
sheets depending on the particle charge. Ions (positively
charged) concentrate preferentially in regions with !ω· !B <
0 (see ??. Indeed the PDF of the scalar product of !ω and
!B is tilted towards negative values (see Fig. 12).

Looking at the PDF of ω (see Fig. 3) the tails are
reduced compared to the neutral and tracer case. The
reason is that ions in the neighborhood of repulsive sheets
are driven into regions of reduced vorticity.

C. Other properties

Further insight can be achieved by measuring the one
particle diffusion of the different kind of particles (see

MHD



0 2 4 6 8 10
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

q

D
2

Effect of charge
Correlation dimension

St = 1

MHD



4

FIG. 7: Sample of neutral (red) and charged (blue) (q = 1)
particles for St = 1, projection of the entire domain

1. Small-scale clustering
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correlation dimension D2 for the charged particle distri-
butions.
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2. Inertial range clustering

Looking at the coarse grained PDFs in Fig. 8 and 9
reveals a stronger clustering of the charged particles also
at inertial range scales. The right tails are less steep than
exponential. Remark that we found clearly steeper right
tails for neutral particles.
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Now we will figure out the regions of clustering for
high particle charges. There are attractive and repulsive
sheets depending on the particle charge. Ions (positively
charged) concentrate preferentially in regions with !ω· !B <
0 (see ??. Indeed the PDF of the scalar product of !ω and
!B is tilted towards negative values (see Fig. 12).

Looking at the PDF of ω (see Fig. 3) the tails are
reduced compared to the neutral and tracer case. The
reason is that ions in the neighborhood of repulsive sheets
are driven into regions of reduced vorticity.

C. Other properties

Further insight can be achieved by measuring the one
particle diffusion of the different kind of particles (see
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FIG. 11: Scalar product of !ω and ions with q = 3
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FIG. 12: PDFs of !ω ·
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Fig. 13). Separation of neutrals is slighly enhanced com-
pared to tracers. The reason is that the heavy particles
preferentially cluster in the vicinity of vorticity sheets.
They exhibit high velocities in these regions.

In contrast, ions are driven away from certain sheets
and have in average lower initial velocities than the
neutral particles. Hence their motion is less diffusive.
Structure functions:
Inertia decreases degree of intermittency as they do not
follow exactly the flow structure, especially near sheets
Lorentz force tends to enhance intermittency. Why???
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FZ Jülich was made available through project HBO22.
Part of the computations were performed on a Linux-
Opteron cluster supported by HBFG-108-291. The work
of H.Homann benefitted from a grant of the DAAD.

[1] C. Shu and S. Osher, J. Comput. Phys. 77, 439 (1988).
[2] H. Homann, J. Dreher, and R. Grauer, Comput. Phys.

Comm. 177, 560 (2007).
[3] J. Bec, L. Biferale, M. Cencini, A. Lanotte, S. Musaccio,

and F. Toschi, Phys. Rev. Lett. p. 84502 (2007).

[4] D. Biskamp, Magnetohydrodynamic Turbulence (Cam-
bridge University Press, Cambridge, 2003).

[5] A. Busse, W. C. Mueller, H. Homann, and R. Grauer,
Phys. Plasmas 14, 122303 (2007).

5

FIG. 11: Scalar product of !ω and ions with q = 3

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

-2 -1  0  1  2

! . B

tracer
St=1, q=0
St=1, q=1
St=1, q=3

St=1, q=10

FIG. 12: PDFs of !ω ·
!B at the particle positions

Fig. 13). Separation of neutrals is slighly enhanced com-
pared to tracers. The reason is that the heavy particles
preferentially cluster in the vicinity of vorticity sheets.
They exhibit high velocities in these regions.

In contrast, ions are driven away from certain sheets
and have in average lower initial velocities than the
neutral particles. Hence their motion is less diffusive.
Structure functions:
Inertia decreases degree of intermittency as they do not
follow exactly the flow structure, especially near sheets
Lorentz force tends to enhance intermittency. Why???

Acknowledgments

Access to the JUMP multiprocessor computer at the
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Conclusions  and Perspectives

Strong correlation between the particle distribution and the 
more violent structures of the flow. Can be used to give insight 
on the flow structure?

Understand the mechanisms responsible for large mass 
fluctuations in MHD. Simple models?

Rescaling of the mass distribution in MHD as a function of     
and    , as that observed in Navier-Stokes?

Effect of electrical interaction between the charged particles?


