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Statistical physics and geophysical flows

The Physical Phenomena

Theoretical ideas :

Self organisation processes. Large number of degrees of
freedom (turbulence).
This has to be explained using statistical physics !!!
Equilibrium and Out of equilibrium statistical mechanics.
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Statistical physics and geophysical flows

Out of Equilibrium Phase Transitions in Real Flows
2D MHD experiments (2D Navier Stokes dynamics)

J. Sommeria, J. Fluid. Mech. (1986)
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Statistical physics and geophysical flows

Out of Equilibrium Phase Transitions in Real Flows
Rotating tank experiments (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney
and M. Ghil)
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Statistical physics and geophysical flows

Random Transitions in Other Turbulence Problems
Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)

VKS experiment Earth

(VKS experiment)

Other examples :
turbulent convection,
random changes of paths for the Kurushio current, weather
regimes, and so on.
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The 2D Stochastic-Navier-Stokes (SNS) Equations

The simplest model for two dimensional turbulence
Navier Stokes equation with a random force

∂ω

∂t
+ u.∇ω = ν∆ω − αω + fs (1)

where fs is a random force. α is the Rayleigh friction
coefficient.
An academic model with experimental realizations
(Sommeria and Tabeling experiments, rotating tanks,
magnetic flows, and so on).
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Out of Equilibrium Phase Transitions in the 2D SNS
Eq.
Random change of flow topology

Order parameter : z1 =
∫

dxdy exp(iy)ω (x , y).

For unidirectional flows |z1| ' 0, for dipoles |z1| ' 0.6− 0.7 .
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Inverse Energy Cascade
Self similar statistics of inertial scales of 2D flows

Sketch of the double
cascade in 2D turbulence

Self similar statistics - Energy spectrum and velocity
increments.
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Universal Inverse Energy Cascade or Large Scale
Energy Condensation

In order to observe this self-similar regime, Rayleigh
friction has to be sufficiently large, in order to prevent the
formation of coherent structure at large scales.
This regime is nearly never realized in real or experimental
flows. It clearly does not describe large scale statistics.
In real flows, one observes energy condensation at largest
scales
We still have an inverse energy cascade but now driven by
large scale (no more universal).
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Robert-Sommeria-Miller (RSM) Theory
Equilibrium statistical mechanics : the most probable vorticity field

A probabilistic description of the vorticity field ω : ρ (x, σ) is
the local probability to have ω (x) = σ at point x
A measure of the number of microscopic field ω
corresponding to a probability ρ :

Maxwell-Boltzmann Entropy: S [ρ] ≡ −
∫
D

dx
∫ +∞

−∞
dσ ρ log ρ

The microcanonical RSM variational problem (MVP) :

S(E0,d) = sup
{ρ|N[ρ]=1}

{S[ρ] | E [ω] = E0 ,D [ρ] = d } (MVP).

Critical points are stationary flows of Euler’s equations :

ω = f (ψ)
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What are Real Flow Regimes
Inverse energy cascade or equilibrium statistical mechanics ?
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What are Real Flow Regimes
Inverse energy cascade or equilibrium statistical mechanics ?

Equilibrium statistical predicts stationary flows. It does not take
into account forces and dissipation.
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What are Real Flow Regimes
Inverse energy cascade or equilibrium statistical mechanics ?

Real flows : out of equilibrium statistical mechanics or inverse
cascade governed by large scales (and not self similar).
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Numerical Simulation of the 2D Stochastic-NS Eq.

Self similar growth of a dipole
structure, for the 2D S-NS
equation
Left : vorticity field
Bottom : vorticity profiles

M Chertkov, C Connaughton, I Kolokolov, V Lebedev
(nlin.CD/0612052, PRL 2007) (Los Alamos)
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The 2D Stochastic Navier-Stokes Equation

The 2D Stochastic Navier Stokes equation :
∂ω

∂t
+ u.∇ω = ν∆ω − αω +

√
2αfs (2)

where fs is a random force (white in time, smooth in space).
The scaling of the forcing is such that the average energy
(enstrophy) is of order one (this is not arbitrary, just a
change of time unit).
We use very small Rayleigh friction, to observe large scale
energy condensation
We study the limit : limα→0 limν→0 (ν � α) (Re� Rα � 1)
(Weak forces and dissipation).
We have time scale separations :

turnover time = 1�1/α = forcing or dissipation time
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Relation with the Stationary States of Euler Eq.

∂ω

∂t
+ u.∇ω = ν∆ω − αω +

√
2αfs (3)

Time scale separation : Magenta terms are small.
At first order, the dynamics is nearly a 2D Euler dynamics.
The flow self organizes and converges towards stationary
solutions for Euler equations :

u.∇ω = 0 or equivalently ω = f (ψ)

where the Stream Function ψ is given by : u = ez ×∇ψ

Stationary flows of Euler equation will play a crucial role.
Degeneracy : what does select f ?
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Stationary Flows for the 2D-Euler Eq. (doubly periodic)

Bifurcation analysis : degeneracy removal, either by the domain
geometry (g) or by the nonlinearity of the vorticity-stream

function relation (f , parameter a4)

General degeneracy removal mechanism. Prediction of similar
phase diagram for a large class of models (QG, SW)
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Numerical Simulation of the 2D Stochastic NS Eq.

Very long relaxation times. 105 turnover times
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Out of Equilibrium Stationary States : Dipoles

Are we close to some stationary flows of Euler Eq. ?
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Vorticity-Streamfunction Relation

Conclusion : we are close to stationary flows of Euler Eq.
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Statistical Equilibria for the 2D-Euler Equation with
Periodic Boundary Conditions

A second order phase transition
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Out of Equilibrium Phase Transition
The time series and PDF of the Order Parameter

Order parameter : z1 =
∫

dxdy exp(iy)ω (x , y).

For unidirectional flows |z1| ' 0, for dipoles |z1| ' 0.6− 0.7 .
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Experimental Applications

Using the equilibrium theory, we can predict the existence
of out of equilibrium phase transitions
Or phase transitions governed by the domain geometry, by
the topography, by the energy
Prediction of flow topology change in Quasi-Geostrophic
and Shallow Water dynamics (rotating tank experiments)
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A Theory for Large Scales of the 2D Navier-Stokes Eq.
An Adiabatic Reduction ?

Euler’s equations have an infinity of stationary solutions :
ω = f (ψ) for any f (Euler’s equations have degenerate
equilibria.)
For the conservative dynamics, equilibrium statistical
mechanics selects f
For Navier-Stokes with weak forces, what does select f
Time scale separation. An adiabatic reduction ?
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Adiabatic Reduction for the Stochastic-NS Eq.
First step (current work) : the stochastic linearised Navier Stokes equation

The first step : linearised Navier Stokes equation close to
an Euler equilibrium, with random forces
The linear operator is non normal (no mode
decomposition) ! Further difficulties
The second step : An equation that describes only the
large scale evolution
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The 2D Linearized Stochastic Euler Equation

A stable equilibria for the 2D Euler equation v0, with
vorticity q0 : v0.∇q0 = 0.
The 2D Euler equation, linearized close to u0, with
stochastic forces :

dq + v.∇q0dt + v0.∇qdt = −αqdt +
√
σ
∑

kl

fkl ẽkldWkl (t)

An infinite dimensional Orstein-Ulhenbeck process
(Gaussian, two point correlations, Lyapounov equation)
Theoretical difficulty : the deterministic linearized operator
is non normal (no mode decomposition)
Landau damping or Orr mechanism
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The 2D Linearized Stochastic Euler Eq.
Stochastic Landau damping (F. B.)

Resonance for the vorticity autocorrelation function for
small α : 〈q(r ,0)q(r ′,0)〉S = O (σ/α) ∝α→0 δ (r − r ′)

No resonances for the stream function and velocity :
〈ψ(r ,0)ψ(r ′,0)〉S = O (σ) and 〈v(r ,0)v(r ′,0)〉 = O (σ)

In the small dissipation limit, the velocity stochastic
process has a definite limit (Stochastic Landau damping)

Further issues :

1 Numerical resolution of the Lyapounov equation (more
physical issues) (F. Gallaire)

2 Is an adiabatic reduction possible ?
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Summary

Messages :

We can predict and observe out of equilibrium phase
transitions for the 2D-Stochastic Navier Stokes equation
We propose experiments to observe such phenomena
(Navier Stokes, Quasi Geostrophic, or Shallow Water
dynamics)
Theory for the 2D stochastic linearized Euler equation.
Stochastic Landau damping.

Other related recent results :
Simplified variational problems for the statistical equilibria of 2D
flows. F. Bouchet, Physica D, 2007
Phase transitions, ensemble inequivalence and Fofonoff flows.
A. Venaille and F. Bouchet, sub. to Phys. Rev. Lett.
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Outline

1 Motivations
Geophysical flows and statistical physics

2 Statistics of the large scales of 2D turbulent flows
Classical views for 2D turbulence, inverse energy
cascade or equilibrium stat. mech. ?
Out of equilibrium phase transitions in the 2D Stochastic
Navier-Stokes Eq. (E. Simonnet, H. Morita and F. B.)

3 The 2D linearized Euler Eq. with stochastic forces

4 Conclusions
More
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The Stochastic Forces

∂ω

∂t
+ u.∇ω = ν∆ω − αω +

√
2αfs (4)

fS(x, t) =
∑

k

fkηk(t)ek(x) (5)

where the ek’s are the Fourier modes (Laplacian eigenmodes)
and < ηk(t)ηk′(t ′) >= δk,k′δ(t − t ′)
(white in time)
For instance fk = A exp− (|k|−m)2

2σ2 with 1
2

∑ |fk|2
|k|2 = 1 (smooth in

space).
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+ u.∇ω = ν∆ω − αω +

√
2αfs (4)

fS(x, t) =
∑

k

fkηk(t)ek(x) (5)

where the ek’s are the Fourier modes (Laplacian eigenmodes)
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The 2D Stochastic Navier-Stokes Equation

∂ω

∂t
+ u.∇ω = ν∆ω +

√
νfs

Some recent mathematical results : Kuksin, Sinai,
Shirikyan, Bricmont, Kupianen, etc

Existence of a stationary measure µν . Existence of
limν→0 µν
In this limit, almost all trajectories are solutions of the Euler
equation

We would like to obtain more physical results :
What is the link of this limit ν → 0 with the RSM theory ?
Will we stay close to some stationary solutions of the Euler
equation ?
Can we describe these stationary states and their
properties ?
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Vorticity-Streamfunction Relation (dipole)

Snapshot With time averaging

Conclusion : we are close to some statistical equilibria
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Vorticity-Streamfunction Relation (Zonal Flow)

Discrepancies with statistical equilibrium ?
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An Out of Equilibrium Phase Transition

Localisation of the phase transition
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An Analogy with a Subcritical Bifurcation ?

A subcritical bifurcation perturbed by an additive noise :

dx = x
(
µ+ x2 − x4

)
dt +

√
σdWt

Deterministic bifurcation diagram PDFs
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Incompatible with the Equilibrium Phase Transition ?

At equilibrium we observe a second order phase transition
(symmetry breaking)

Pitchfork bifurcation diagram
(equilibrium)

Bifurcation diagram for the
SDE model
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