Quantifying clustering and segregation of particles and bubbles in turbulent flow

Enrico Calzavarini

ENS Lyon, Physique

International Collaboration for Turbulence Research

In collaboration with: M. Cencini, F. Toschi, (Roma, IT), D. Lohse (UTwente, NL), M.Kerscher (Munich,D).

Focus on spatial statistics of particles

bubbles

heavy

Review and propose tools to characterize clustering and segregation

Goal: detailed comparison with experiments to test/improve particle models

Particle's equation of motion

heavy and light inertial particles: finite response time & added mass

valid in the limits of $a \ll \eta$, $\operatorname{Re}_a = a \operatorname{v}_a / v \ll 1$

negligible gravity, dilute suspension (no collisions)

see: Maxey, M. & Riley, J. 1983 Equation of motion of a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883-889.

Eulerian dynamics:

Homogeneous isotropic turbulent flow at $\text{Re}_{\lambda} \approx O(10^2)$ spectral simulation in periodic box DNS:

I. SARA 128³ Re_{λ} =75, tracers & heavy & light (504 families)

- **2.** CASPUR 512³ Re_{λ} =180 tracers & heavy & light (64 families)
- **3.** DEISA 2048³ Re_{λ} =400 with tracers & heavy (20 families)

Different particles classes (B,St) evolved in the same flow

Slices ~512x512x8 η from DNS at $\text{Re}_{\lambda}{\approx}180$

Characterizing particle clusters 1. Kaplan-Yorke dimension: D_{KY}

Particle equations of motion defines a dissipative dynamical system Attractor's dimension in the (x,v) space: D_{KY}

$$D_{KY} \equiv J - rac{\lambda_1 + \dots + \lambda_J}{\lambda_{J+1}}$$
 $egin{array}{c} \lambda_1 + \dots + \lambda_J \geq 0 \ \lambda_1 + \dots + \lambda_{J+1} < 0 \end{array}$

6 Lyapunov exponents computed by tracking

$$\begin{split} \mathbf{R}(t) &\equiv (\delta \mathbf{x}(t), \delta \mathbf{v}(t)) \\ \frac{d\mathbf{R}}{dt} &= \mathcal{M}_t \mathbf{R} \end{split} \qquad \begin{array}{l} \lambda_i \ = \ \lim_{T \to \infty} \gamma_i(T) \checkmark & \mbox{stretching} \\ \mbox{Standard orthonormalization} \\ \mbox{Gram-Schmidt procedure adopted} \end{array}$$

As in J. Bec Phys. Fluids (2003) & JFM (2005), J. Bec et al. JFM (2006)

$\operatorname{Re}_{\lambda}$ dependence?

Comparison: $\operatorname{Re}_{\lambda}=75$ (filled sybmols) and $\operatorname{Re}_{\lambda}=180$ (empty sybmols)

St

2. Correlation dimension D_2

Fractal dimension hierarchy: $D_2 \le D_1 = D_{KY}$

Same features as D_{KY} and *easily accessible* to experiments

3. A morphological characterization: Minkowski functionals of point clouds

- 1. Put balls $\mathcal{B}_r(\mathbf{x}_i)$ with radius \boldsymbol{r} around each particle \boldsymbol{i}
- 2. Let \boldsymbol{r} increase
- 3. Consider $\mathcal{A}_r = igcup_{i=0}^N \mathcal{B}_r(\mathbf{x}_i)$
- 4. Measure: total volume, surface, mean curvature and Euler characteristic of A_r

See: Mecke, K. R. et al. 1994 Robust morphological measures for large-scale structure in the Universe. *Astron. Astrophys.* 288, 697–704 and ref. therein.

Visualization of A_r

St=0.6 3 snapshots of 10^5 particles in the same velocity field

Volume $V_{o}(r)$

"Degeneracy" of fractal dimension removed: particle species with same D_{KY} may have very different morphologies

Red color: bubbles and heavy with same $D_{KY} \approx 2.6$ Green color: bubbles and heavy with same $D_{KY} \approx 1.65$ Dotted line: Poisson sample

$\operatorname{Re}_{\lambda}$ dependence

15

for heavy particle (β =0, St=0.6)

N_α: total number of particles of type α n_i^{α} : number of particles of type α in box *i*

 $S_{\alpha^1,\alpha^2}(r)$ vs. the coarsening scale r for segregated families

Definition of a segregation length r_{seg} : $S_{\alpha_1,\alpha_2}(r_{seg}) = 1/2$

r_{seg} behavior $\neg s$. particle number N

Preprints on spatial clustering:

- Dimensionality and morphology of particle and bubble clusters in turbulent flow, • E. C., M. Kerscher, D. Lohse and F. Toschi, ArXiv:/nlin.CD/0710.1705
- Quantifying turbulence induced segregation of inertial particles, • E. C., M. Cencini, D. Lohse, F. Toschi, ArXiv:/nlin.CD/0802.0607
- Quantifying microbubble clustering in turbulent flow from single-point. measurements.

E. C., T. H. van den Berg, F. Toschi and D. Lohse, ArXiv: physics/0607255 (Phys Fluids in press)

iCFDdatabase

Lagrangian data (x(t),v(t), a(t),u(t), $\partial_i u_i$ (t)) available at *http://cfd.cineca.it/*

Acknowledgments:

Amsterdam The Netherlands

Bologna Italy

Roma

Italv