Description Eulerienne-Lagrangienne des équations de Navier-Stokes

Carlos Cartes

Miguel Bustamante

Marc-E. Brachet.

Laboratoire de Physique Statistique

École Normale Supérieure de Paris

Introduction

Nous réalisons une généralisation de la formulation de Constantin pour capturer la dynamique des équations de Navier-Stokes en faisant une extension de la représentation de Weber-Clebsch à partir d'Euler vers Navier-Stokes. Le but de cette extension est de capturer le phénomène de la reconnexion de vortex.

Clebsh et Weber-Clebsch

Dans la représentation classique de la dynamique des équations de Euler la vitesse est écrite de façon non-linéaire à partir de *q* paires de potentiels

$$\mathbf{u} = \sum_{i=1}^{q} \lambda^{i} \nabla \mu^{i} - \nabla \phi.$$

La formulation en termes de variables de Clebsch consiste en une seule couple de champs pourtant la vitesse à représenter a une helicité moyenne nulle. Par contre la formulation de Weber-Clebsch consiste en trois pairs avec le quels il n'a plus de limitations pour l'écoulement.

Données initiales

Champs périodiques dans l'espace peuvent être générés pour cette formulation a partir de

$$\mu^i = x^i + \mu_p^i$$

et si on assume que μ_p^i et les autres champs ϕ et λ^i sont périodiques. Pour initialiser les champs nous supposons que quand t = 0

$$\begin{array}{rcl} \mu_p^i &=& 0\\ \lambda^i &=& u^i\\ \phi &=& 0 \end{array}$$

Pour obtenir les équations du mouvement que reproduisent la dynamique de Navier-Stokes, on applique D_t sur la définition de la transformation de Weber-Clebsch

$$D_t \mathbf{u} = \sum_{i=1}^q \left(D_t \lambda^i \nabla \mu^i - D_t \mu^i \nabla \lambda^i \right)$$
$$- \nabla \left(D_t \phi + \frac{1}{2} |u|^2 - \sum_{i=1}^q D_t \mu^i \lambda^i \right)$$

qui doit être l'équivalent a

$$D_t \mathbf{u} = -\nabla p + \mathbf{f}$$
 et $\mathbf{f} = \nu \triangle \mathbf{u}$

Alors introduisons les termes générales

$$D_t \lambda^i = L^i [\lambda, \mu]$$
$$D_t \mu^i = M^i [\lambda, \mu]$$

et on fait l'identification

$$\sum_{i=1}^{q} \left(L^{i} \nabla \mu^{i} - M^{i} \nabla \lambda^{i} \right) = \mathbf{f} - \nabla G.$$

Cet est un système de d équations linéaires pour les 2q inconnues L^i et M^i .

Si on fait $\nu = \mathbf{f} = G = L^i = M^i = 0$ nous obtenons les équations d'Euler.

Donc la dynamique de Navier-Stokes se obtient quand les potentiels obéissent un système d'équations d'advection modifies.

Finalement nous changeons le coté droite des équations, pour obtenir équations similaires a la diffusion

$$D_t \lambda^i = \nu \Delta \lambda^i + \widetilde{L}^i [\lambda, \mu]$$

$$D_t \mu^i = \nu \Delta \mu^i + \widetilde{M}^i [\lambda, \mu]$$

et le système

$$\sum_{i=1}^{q} \left(\widetilde{L}^{i} \nabla \mu^{i} - \widetilde{M}^{i} \nabla \lambda^{i} \right) = \widetilde{\mathbf{f}} - \nabla \widetilde{G},$$

$$\widetilde{\mathbf{f}} = 2\nu \sum_{i=1}^{q} \sum_{\alpha=1}^{d} \partial_{\alpha} \lambda^{i} \partial_{\alpha} \nabla \mu^{i}.$$

Solution de Moore-Penrose

Pour obtenir les termes \tilde{L}^i et \tilde{M}^i nous résoudrons le système linéaire de *d* équations et 2q inconnues, comme 2d > q nous utiliserons la pseudo inverse de Moore-Penrose, en ajoutons la restriction de que la norme

$$\sum_{i=1}^{q} \left(\widetilde{L}^{i} \widetilde{L}^{i} + \tau^{-2} \widetilde{M}^{i} \widetilde{M}^{i} \right)$$

soit la plut petite possible. Aussi il faut introduire le paramètre τ avec les dimensions du temps.

Solution de Moore-Penrose

La solution avec la restriction de Moore-Penrose peut être écrit

$$D_t \lambda^i = \nu \Delta \lambda^i + \nabla \mu^i \cdot \mathbb{H}^{-1} \cdot \left(\widetilde{\mathbf{f}} - \nabla \widetilde{G} \right)$$
$$D_t \mu^i = \nu \Delta \mu^i - \tau^2 \nabla \lambda^i \cdot \mathbb{H}^{-1} \cdot \left(\widetilde{\mathbf{f}} - \nabla \widetilde{G} \right)$$

Ou le produit scalaire indique une multiplication matriciel ou vectoriel et la matrice symétrique de $d \times d$ dimensions \mathbb{H}

$$\mathbb{H}_{\alpha\beta} \equiv \sum_{i=1}^{q} \left(\tau^2 \,\partial_{\alpha} \lambda^i \partial_{\beta} \lambda^i + \partial_{\alpha} \mu^i \partial_{\beta} \mu^i \right) \,,$$

Solution de Ohkitani-Constantin

La méthode utilisé consiste en fixer le terme $\widetilde{M}^i = 0$ et on obtiens le système

$$\frac{D\lambda^{i}}{Dt} = \nu \Delta \lambda^{i} + \widetilde{L}^{i}[\lambda, \mu]$$
$$\frac{D\mu^{i}}{Dt} = \nu \Delta \mu^{i},$$

$$\sum_{i=1}^{d} \widetilde{L}^{i} \nabla \mu^{i} = 2\nu \sum_{i=1}^{d} \sum_{\alpha=1}^{d} \partial_{\alpha} \lambda^{i} \partial_{\alpha} \nabla \mu^{i}.$$

Limite Singulier

Pour la forme de la matrice symétrique \mathbb{H} on peut voir que le système général de Moore-Penrose deviens le système de Ohkitani-Constantin quand $\tau = 0$ (q = d = 3 G = 0). Mais nous aurons problèmes avec ça formulation quand

 $\det\left(\nabla\mu\right)=0$

Donc pour continuer avec les calculs on doit faire un resetting, ça veut dire retourner aux *conditions initiales*

$$\lambda \rightarrow \mathbf{u}(t_0)$$

 $\mu_p \rightarrow 0$

Implémentation Numérique

L'étude numérique de la formulation sera réalisé avec la condition initiale de Boratav-Pelz-Zabusky

Dynamique des Vortex

Figure 1: Évolution temporelle de ω^2 avec $\tau = 0.01$ pour les temps 3.0, 4.2, 5.4 et 6.6.

Résultats Numériques

Figure 2: Évolution temporelle de l'enstrophie Ω pour un nombre de Reynolds de R = 1044 avec $\tau = 0$, 0.01 et 0.1 (+, \circ et \times).

Résultats Numériques

Figure 3: Évolution temporelle de Δt pour $\tau = 0, 0.01$ et 0.1 (\circ, \Box et +), les triangles correspondent à la simulation effectué par Ohkitani-Constantin.

Résultats Numériques

Figure 4: Minima (rouge) et maxima (bleu) de det(\mathbb{H}) (gauche) et du carré de la vorticité (droite).

Conclusions

- La formulation de Ohkitani-Constantin est un cas particulier des équations du mouvement générales quand $\tau \rightarrow 0$.
- Formulation de Moore-Penrose n'a pas besoin de resetting a Reynolds bas, mais ils permettent faire simulations numériques a Reynolds plus haut.
- L'intervalle entre les resettings croît de façon brusque quand τ est varié a partir de 0 a un valeur beaucoup plus petit que Δt .