Fluctuations relations for
diffusion processes % e

Search for a common ground between some recent ideas in non-equilibrium

statistical mechanics and in turbulence




Weakly non-equilibrium dynamics
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Fluctuation dissipation-theorem (1951) )

Herbert B.Callen(1919-1993)
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Green-Kubo relations (~1950) _‘._,';-_-_

Ryogo KUBO ( 1920 ...)

Onsager relations (1931)

Lars Onsager (1903-1976)




Far from equilibrium dynamics
FLUCTUATION RELATIONS

Jarzynski relations (1997)

Evans-Searle relations(1994)
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Gallavotti-Cohen relations(1995) \
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Toy model 1 : Dissipative Langevin dynamics

dx =-I'VH +7n(1)

dt

Einstein
relation

The Gibbs density |BiSZIe) 1s the invariant
density.The density current of this density vanishes

and we have the detailled balance (DB)
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To Enter in the non-equilibrium world
BREAK :

o Stationnarity : =

e Hamiltonian form : add non-gradiant term,

no local term [ TURBULENCE

 Einstein relation :

i Fourier law




General mathematical setup for our work
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Exemples of diffusive equations

1) Kraichnan model of turbulent flow with [fi=k

2) Deterministic dynamical system with Skt

3) Langevin dynamics
A tribute For
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Passive transport of particles:
e Lagrangian tracers with no inertia:

r = vt(r)
e particles with inertia: friction foree
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™\ Stokes time

from J. Bec, J. Fluid Mech.
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transport in Kraichnan velocities: Gaussian random ensemble of fields v¢(r)
decorrelated in time widely nsed in last years to model turbulent phenomena




Krzysztof shown in the last talk that we can write :

For a general diffusive system, the DB or MDB may be replaced
by the detailed fluctuation relation (DFR):

po(dz) Py p(z;dy|W) e™" = po(dy*) P, _(y*:dz*| - W) (DFR)

where
o p(dr)=e~¥0%)ds is the initial distribution of the forward process
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o up(dy*)=e 'dy™ is the initial distribution of the backward process

s Fu T-f r,dy|W) is the transition probability with the constraint W=W

fixing the value of a functional W of the forward process with the
interpretation of the entropy production

F_'“I T-fu*.rf‘_r*|ﬂ'} is the similar constraint transition probability for
i,

the backward process




For the tangent process , we have the
multiplicative large deviation form :

PT (j{ — V, ﬁ){j}; O exp{'_TZ(%)}{fr

and

The generalized Gallavotti-Cohen relation : Z (_) — = Z (__)

/(@) 1s important for turbulent transport since it determines:

rate of decay of moments of transported scalar
o rate of growth of density and magnetic field Hiuctuations

o multi-fractal dimensions of attractor for tracers in compressible flows
and for nertial particles

o polymer stretching in presence of turbulence



KRAICHNAN CASE

/- 1s accessible analytically in the Kraichnan model
of turbulent advection via relations to integrable models

Chetrite-Del lanoy—Gawedzki, J.Stat.Phys 2006
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e In the homogeneous isotropic case with D" (r — ")
rotationally covariant, o,(f) satisty the Langevin equation
of the Calogero-Sutherland type

e In the homogeneous 2d case with square symmetry, Z(—5— ) is
expressed by the ground state energy of the Lamé-Hermite
elliptic Hamiltonian

e In the 1d homogeneous case, for the inertial particles
e

D4 /(2T — L . F)
oR(t)e""'*7) = 4(t) behaves as the wave function '(x)

in 1d Anderson localization in a d-correlated potential




For the homogeneous isotropic flow
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For the homogeneous 2d flow on aperiodic square
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where £/, is the ground state energy of the periodic l-dimensional
Schrodinger operator of the Lamé-Hermite type:

— — (e + 1) Viig(w))
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with the attractive periodic potential
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