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Problem

We consider passive tracers in a 2D compressible turbulent flow

We just integrate : d’zt(t) = v(x;,1)

x;(t) : Position of the ith particle.
v(x,t) : Turbulent synthetic flow.

Physically : Light particles moving on the surface of a 3D turbulent
flow.

(V.v)s = Opvg + Oyvy = —0,v,

J.R. Cressman, J. Davoudi and al. New Journ. of Ph., 6 (2004).



The compressiblity rate :
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C = 0 = incompressible flow
C = 1 = potential flow (irrotational)



The compressiblity rate :
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C = 0 = incompressible flow
C = 1 = potential flow (irrotational)

Interested in the particle distribution P(n,) :

n, : coarse grained density over scale r.
C = 0 — The particle distribution P(n,) is Poissonian at all scales.

When C , deviation from uniform Poisson distribution .
We study P(n,), and its momentum with respect to C.



Numerical method for the flow

Synthetic compressible turbulent flow : v = v; + v

{ vi = Y. Isin(k,.x 4+ wit + ¢p)
vo = S Cpsin(ky.X + wnt + ¥n)

With, I,=1,(1-C)2k, and C,=C,C2k,
And,

{ k, = cos(¢n)X+sin(¢n)§

RnL - Sin(gbn)f( + COS(¢n)y

&n, ©n and 1, = random variables chosen in [0, 27].

I2,C? ~ kS = Kolmogorov.

Wy = )\m = we took A = 0.5.

1 = 2w /k,, : dissipative scale, L =27 /k; : integral scale
Re = (L/n)?



Example of particle distribution
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. = v : largest Lyapunov
n exponent

. = Cc~ 0.2
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If C >C., ~ becomes negative = particles accumulate on points.



Measurements

We measured the variance of the PDF P(n,) at different scales in
the inertial and the dissipative range.
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We observe : (n? — 1) ~ <, with two different exponents o
(dissipative ra.) and «; (inertial ra.) (a; < ay). 0 < o < 2.

= The inhomogeneities grow faster in the dissipative range than in
the inertial range.

No significant dependance of o ; with L /1 has been found.



Shape of the PDF P(n,) in the inertial range :
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Algebraic tails are observed at small concentrations :

° P(nr) X Ny~ n§ forn, < 1

e N\, with C and 1/r
= Probability of almost empty regions .

= Behavior observed for inertial particles.
Bec and al., PRL 98, 084502 (2007).



Superposition of the PDF in the inertial range.

We suppose : P(n,) = f(C% x (L/r)").

Cx (L) = 040
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We found : 3~ 1 and k ~ 0.5.

¢ seems to behave as : (C x (L/r)0-5)0-9
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P(n,) should depends only on the contraction rate — ((V.v),)..
(V9)slx))e = ([ xGu(ox, x0) (V). ()

Where  G,.(x,%0) = 1/(277?) exp(—(x — x¢)/2r?) : Low pass
Gaussian filter.
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(Vv)y)e ~Cx (L/r)°® in a part of the inertial range.

= P(n;) = f((V-v)r)c)



Conclusion

Properties of P(n,) = similarites with the inertial particles
problem.

e Scaling behavior of (n? — 1) :

o (n2—1)~r @i with o; < .
o Inertial particles = behavior only observed in the dissipative
range.

e P(n,) in the inertial range :
o Algebraic tails at small concentrations.
Probability of finding empty regions increase with C and 1/r.
e P(n,) depends only on ((V.v),),

¢ No significant effect of L /7.



