Intermittent particle distribution in two-dimensional synthetic compressible turbulence

Lauris Ducasse, Alain Pumir

Institut Non Linéaire de Nice Laboratoire J.A. Dieudonné, Nice Université de Nice Sophia Antipolis

2 Avril 2008

Problem

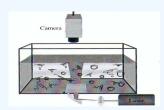
We consider passive tracers in a 2D compressible turbulent flow

We just integrate : $\frac{d\mathbf{x}_i(t)}{dt} = \mathbf{v}(\mathbf{x}_i, t)$

 $\mathbf{x}_i(t)$: Position of the *i*th particle.

 $\mathbf{v}(\mathbf{x},t)$: Turbulent synthetic flow.

Physically : Light particles moving on the surface of a 3D turbulent flow.



$$(\nabla \cdot \mathbf{v})_{\mathcal{S}} = \partial_x v_x + \partial_y v_y = -\partial_z v_z$$

J.R. Cressman, J. Davoudi and al. New Journ. of Ph., 6 (2004).

The compressiblity rate:

$$C = \frac{\langle (\nabla . \mathbf{v})^2 \rangle}{\langle (\partial_x v_x)^2 \rangle + \langle (\partial_x v_y)^2 \rangle + \langle (\partial_y v_x)^2 \rangle + \langle (\partial_y v_y)^2 \rangle}$$

 $C = 0 \Rightarrow$ incompressible flow

 $\mathcal{C} = 1 \Rightarrow \text{potential flow (irrotational)}$

The compressiblity rate:

$$C = \frac{\langle (\nabla \cdot \mathbf{v})^2 \rangle}{\langle (\partial_x v_x)^2 \rangle + \langle (\partial_x v_y)^2 \rangle + \langle (\partial_y v_x)^2 \rangle + \langle (\partial_y v_y)^2 \rangle}$$

 $C = 0 \Rightarrow$ incompressible flow

 $C = 1 \Rightarrow \text{potential flow (irrotational)}$

Interested in the particle distribution $P(n_r)$:

 n_r : coarse grained density over scale r.

 $\mathcal{C} = 0 \to \text{The particle distribution } P(n_r)$ is Poissonian at all scales.

When \mathcal{C} /, deviation from uniform Poisson distribution /. We study $P(n_r)$, and its momentum with respect to \mathcal{C} .

Numerical method for the flow

Synthetic compressible turbulent flow : $\mathbf{v} = \mathbf{v}_I + \mathbf{v}_C$

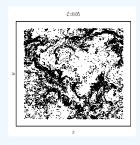
$$\begin{cases} \mathbf{v}_I = \sum_{n=1}^m \mathbf{I}_n \sin(\mathbf{k}_n \cdot \mathbf{x} + \omega_n t + \varphi_n) \\ \mathbf{v}_C = \sum_{n=1}^m \mathbf{C}_n \sin(\mathbf{k}_n \cdot \mathbf{x} + \omega_n t + \psi_n) \end{cases}$$

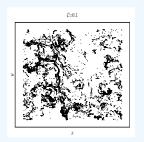
With,
$$\mathbf{I}_n = I_n (1 - \mathcal{C})^{\frac{1}{2}} \hat{\mathbf{k}}_{n\perp}$$
 and $\mathbf{C}_n = C_n \mathcal{C}^{\frac{1}{2}} \hat{\mathbf{k}}_n$
And,
$$\begin{cases} \hat{\mathbf{k}}_n &= \cos(\phi_n) \hat{\mathbf{x}} + \sin(\phi_n) \hat{\mathbf{y}} \\ \hat{\mathbf{k}}_{n\perp} &= -\sin(\phi_n) \hat{\mathbf{x}} + \cos(\phi_n) \hat{\mathbf{y}} \end{cases}$$

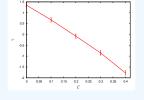
 ϕ_n , φ_n and $\psi_n \Rightarrow$ random variables chosen in $[0, 2\pi]$.

$$\begin{split} I_n^2, C_n^2 \sim k_n^{-5/3} &\Rightarrow \text{Kolmogorov.} \\ \omega_n &= \lambda \sqrt{k_n^3 E(k_n)}, \Rightarrow \text{we took } \lambda = 0.5. \\ \eta &= 2\pi/k_m \text{ : dissipative scale, } \qquad L = 2\pi/k_1 \text{ : integral scale} \\ Re &= (L/\eta)^{4/3} \end{split}$$

Example of particle distribution







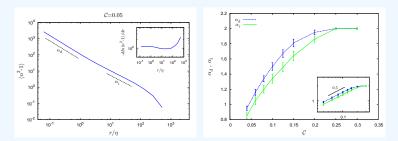
 $\Rightarrow \gamma : \mathsf{largest\ Lyapunov} \\ \mathsf{exponent}$

 $\Rightarrow C_c \simeq 0.2$

If $C > C_c$, γ becomes negative \Rightarrow particles accumulate on points.

Measurements

We measured the variance of the PDF $P(n_r)$ at different scales in the inertial and the dissipative range.

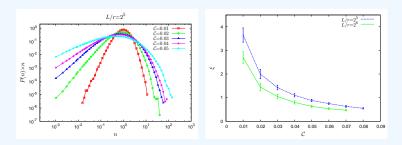


We observe : $\langle n_r^2 - 1 \rangle \sim r^{-\alpha}$, with two different exponents α_d (dissipative ra.) and α_i (inertial ra.) ($\alpha_i < \alpha_d$). $0 < \alpha < 2$.

 \Rightarrow The inhomogeneities grow faster in the dissipative range than in the inertial range.

No significant dependance of $\alpha_{d,i}$ with L/η has been found.

Shape of the PDF $P(n_r)$ in the inertial range :



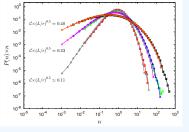
Algebraic tails are observed at small concentrations:

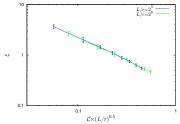
- $P(n_r) \times n_r \sim n_r^{\xi}$ for $n_r \ll 1$
- $\xi \searrow$ with $\mathcal C$ and 1/r
 - \Rightarrow Probability of almost empty regions \nearrow .
- \Rightarrow Behavior observed for inertial particles.

Bec and al., PRL 98, 084502 (2007).

Superposition of the PDF in the inertial range.

We suppose : $P(n_r) = f(\mathcal{C}^{\beta} \times (L/r)^{\kappa})$.





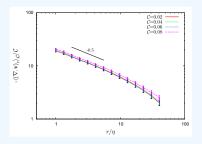
We found : $\beta \simeq 1$ and $\kappa \simeq 0.5$.

 ξ seems to behave as : $(\mathcal{C} \times (L/r)^{0.5})^{0.9}$

 $P(n_r)$ should depends only on the contraction rate $\to \langle (\nabla \cdot \mathbf{v})_r \rangle_{\mathcal{L}}$.

$$\langle (\nabla \cdot \mathbf{v})_r(\mathbf{x_0}) \rangle_{\mathcal{L}} = \langle \int d^2 \mathbf{x} \, \mathcal{G}_r(\mathbf{x}, \mathbf{x_0}) \, (\nabla \cdot \mathbf{v})_r(\mathbf{x}) \rangle_{\mathcal{L}}$$

Where $\mathcal{G}_r(\mathbf{x}, \mathbf{x_0}) = 1/(2\pi r^2) \exp(-(\mathbf{x} - \mathbf{x_0})/2r^2)$: Low pass Gaussian filter.



 $\langle (\nabla . \mathbf{v})_r \rangle_{\mathcal{L}} \sim \mathcal{C} \times (L/r)^{0.5}$ in a part of the inertial range.

$$\Rightarrow P(n_r) = f(\langle (\nabla \cdot \mathbf{v})_r \rangle_{\mathcal{L}})$$

Conclusion

Properties of $P(n_r) \Rightarrow$ similarites with the inertial particles problem.

- Scaling behavior of $\langle n_r^2 1 \rangle$:
 - $\langle n_r^2 1 \rangle \sim r^{-\alpha_{d,i}}$ with $\alpha_i < \alpha_d$.
 - Inertial particles ⇒ behavior only observed in the dissipative range.
- $P(n_r)$ in the inertial range :
 - Algebraic tails at small concentrations. Probability of finding empty regions increase with $\mathcal C$ and 1/r.
 - $P(n_r)$ depends only on $\langle (\nabla . \mathbf{v})_r \rangle_{\mathcal{L}}$
- No significant effect of L/η .