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Hyperviscous equations

∂tv + v∂xv = −µkG
−2α(−∂2

x)αv

∂tv + v ·∇v = −∇p− µkG
−2α(−∇2)αv, ∇ · v = 0

µ(k/kG)2α

∂tv = B(v, v) + Lαv

∂tu = PkGB(u, u), uo = PkGv0

PkG
kG

Burgers

N-S

low-pass filter at wavenumberProjector

Galerkin truncation

Abstract form

Dissipation rate

α = dissipativity Here α > 1.

→ 0 or ∞ when α→∞

µ > 0, kG > 0,

:

.



Large dissipativity limit and thermalization

True for: Burgers, Navier-Stokes, MHD, DIA and EDQNM.
False for: MRCM and resonant wave interaction theory.

Galerkin-truncated Burgers first studied by Majda and Timofeyev 2000

Galerkin-truncated  3D incompressible Euler first studied at high resolution by Cichowlas, Bonaiti,  Debbasch 
and  Brachet 2005

For α→∞, and fixedµ and kG, the solution of the hyperdissipative equations
tend to the solution of the Galerkin-truncated equations

scaling zone E!k; t" increases with time but E!k; t" de-
creases with time for k close (but inferior) to kth!t".

The traditionally expected [5,12] asymptotic dynamics
of the system is to reach an absolute equilibrium, which is a
statistically stationary exact solution of the truncated Euler
equations, with energy spectrum E!k" # ck2. Our new
results (see Fig. 1) show that a time-dependent statistical
equilibrium appears long before the system reaches its
stationary state. Indeed, the early appearance of a k2

zone is the key factor in the relaxation of the system
towards the absolute equilibrium: as time increases, more
and more modes gather into a time-dependent statistical
equilibrium, which itself tends towards an absolute
equilibrium.

Since the total energy E is constant, the energy dissi-
pated from large scales into the time-dependent statistical
equilibrium is given by

Eth!t" #
X

kth!t"<k

E!k; t": (4)

The time evolutions of kth and Eth are presented in Fig. 2.
The figure clearly displays the long transient during which,
for all resolutions, kth decreases and Eth increases with
time. Note that, at all times, kth increases and Eth decreases
with the resolution.

Since the energy of the time-dependent equilibrium
increases with time, the modes outside the equilibrium

lose energy. The presence of a time-dependent equilibrium
thus induces an effective dissipation on the lower k modes.

We now estimate the characteristic time of effective
dissipation !!kd" of modes kd close to kth!t" by assuming
time-scale separation and studying, at each time t, the
relaxation towards the time-independent absolute equilib-
rium characterized by Eth!t" and kmax. The existence of a
fluctuation dissipation theorem (FDT) [13,14] ensures than
dissipation around the equilibrium has the same character-
istic time scale as the equilibrium correlation functions
hv̂"!k; t"v̂#!k0; 0"i [brackets denote equilibrium statistical
averaging over initial conditions v̂#!k0; 0"]. Defining this
time scale !C as the parabolic decorrelation time

!2C@tthv̂"!k; t"v̂#!k0; 0"ijt#0 # hv̂"!k; 0"v̂#!k0; 0"i; (5)

time translation invariance allows one to express the
second-order time derivative as $h@tv̂"!k; t" %
@t0 v̂#!k0; t0"ijt#t0#0. Using expression (1) for the time de-
rivatives reduces the evaluation of !C to that of an equal-
time fourth-order moment of a Gaussian field with corre-
lation hv̂"!k; t"v̂#!$k; t"i # AP"#!k" [5] where A #
Eth=!2kmax"3. The only nonvanishing contribution is a
one loop graph [8,15]. The correlation time !C associated
with wave number k is found in this way [14] to obey the
simple scaling law

!C # C
k

!!!!!!!
Eth

p ; (6)

where C # 1:433 82 is a constant of order unity. The time
scale !C is the eddy turnover time at wave number kth.
Because of Kolmogorov (K41) behavior (see below) the
evolution of Eth is governed by the large-eddy turnover
time. The assumption of time-scale separation made above
is thus consistent.

This strongly suggests the introduction of an effective
generalized Navier-Stokes model for the dissipative dy-
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FIG. 2 (color online). Time evolution of kth (left vertical axis)
and Eth (right vertical axis) at resolutions 2563 (circle &), 5123

(triangle 4), 10243 (cross %), and 16003 (cross +).
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FIG. 1 (color online). Energy spectra. Top: resolution 16003 at
t # !6:5; 8; 10; 14" (!, +, &, *); bottom: resolutions 2563 (circle
&), 5123 (triangle 4), 10243 (cross %), and 16003 (cross +) at
t # 8. The dashed lines indicate k$5=3 and k2 scalings.
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3D Euler

Galerkin-truncation ⇒ thermalization (Lee, 1952; Hopf, 1952; Kraichnan, 1958)

Galerkin-truncated

16003

Cichowlas et al.

Same resolution; different times

Same time; different resolutions



Cichowlas et al. (2005)  “reproduced” by Bos and Bertoglio(2006) with EDQNM

scaling zone E!k; t" increases with time but E!k; t" de-
creases with time for k close (but inferior) to kth!t".

The traditionally expected [5,12] asymptotic dynamics
of the system is to reach an absolute equilibrium, which is a
statistically stationary exact solution of the truncated Euler
equations, with energy spectrum E!k" # ck2. Our new
results (see Fig. 1) show that a time-dependent statistical
equilibrium appears long before the system reaches its
stationary state. Indeed, the early appearance of a k2

zone is the key factor in the relaxation of the system
towards the absolute equilibrium: as time increases, more
and more modes gather into a time-dependent statistical
equilibrium, which itself tends towards an absolute
equilibrium.

Since the total energy E is constant, the energy dissi-
pated from large scales into the time-dependent statistical
equilibrium is given by

Eth!t" #
X

kth!t"<k

E!k; t": (4)

The time evolutions of kth and Eth are presented in Fig. 2.
The figure clearly displays the long transient during which,
for all resolutions, kth decreases and Eth increases with
time. Note that, at all times, kth increases and Eth decreases
with the resolution.

Since the energy of the time-dependent equilibrium
increases with time, the modes outside the equilibrium

lose energy. The presence of a time-dependent equilibrium
thus induces an effective dissipation on the lower k modes.

We now estimate the characteristic time of effective
dissipation !!kd" of modes kd close to kth!t" by assuming
time-scale separation and studying, at each time t, the
relaxation towards the time-independent absolute equilib-
rium characterized by Eth!t" and kmax. The existence of a
fluctuation dissipation theorem (FDT) [13,14] ensures than
dissipation around the equilibrium has the same character-
istic time scale as the equilibrium correlation functions
hv̂"!k; t"v̂#!k0; 0"i [brackets denote equilibrium statistical
averaging over initial conditions v̂#!k0; 0"]. Defining this
time scale !C as the parabolic decorrelation time

!2C@tthv̂"!k; t"v̂#!k0; 0"ijt#0 # hv̂"!k; 0"v̂#!k0; 0"i; (5)

time translation invariance allows one to express the
second-order time derivative as $h@tv̂"!k; t" %
@t0 v̂#!k0; t0"ijt#t0#0. Using expression (1) for the time de-
rivatives reduces the evaluation of !C to that of an equal-
time fourth-order moment of a Gaussian field with corre-
lation hv̂"!k; t"v̂#!$k; t"i # AP"#!k" [5] where A #
Eth=!2kmax"3. The only nonvanishing contribution is a
one loop graph [8,15]. The correlation time !C associated
with wave number k is found in this way [14] to obey the
simple scaling law

!C # C
k

!!!!!!!
Eth

p ; (6)

where C # 1:433 82 is a constant of order unity. The time
scale !C is the eddy turnover time at wave number kth.
Because of Kolmogorov (K41) behavior (see below) the
evolution of Eth is governed by the large-eddy turnover
time. The assumption of time-scale separation made above
is thus consistent.

This strongly suggests the introduction of an effective
generalized Navier-Stokes model for the dissipative dy-
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FIG. 2 (color online). Time evolution of kth (left vertical axis)
and Eth (right vertical axis) at resolutions 2563 (circle &), 5123

(triangle 4), 10243 (cross %), and 16003 (cross +).
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FIG. 1 (color online). Energy spectra. Top: resolution 16003 at
t # !6:5; 8; 10; 14" (!, +, &, *); bottom: resolutions 2563 (circle
&), 5123 (triangle 4), 10243 (cross %), and 16003 (cross +) at
t # 8. The dashed lines indicate k$5=3 and k2 scalings.
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Eddy-Damped Quasi-Normal Markovian 
spectrum

“QN” --- Chou(1940), Millionshtchikov(1941): realizability problem

“N” --- Lee (1952), Hopf(1952): statistics of absolute equilibria of truncated Euler

DIA (Kraichnan): tractability problem

“ED”, “M” --- Orszag(1970, 1977)

(
∂
∂t + 2νk2

)
E(k, t) =∫∫

!k
dpdqθkpqb(k, p, q) k

pq E(q, t)
[
k2E(p, t)− p2E(k, t)

]
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Hyperviscous EDQNM:
convergence to Galerkin truncation and secondary bottleneck ...



Bottleneck, thermalization, depletion of intermittency, 
etc

●
●

●
●

Large produces a huge thermalized bottleneck

Run 2048-1. Figure 4 shows !(k) at various times in Run
2048-1. The range over which !(k) is nearly constant is
quite wide; it is wider than the flat range of the correspond-

ing compensated-energy-spectrum "see Fig. 5#. The station-
arity is also much better than that of lower resolution DNSs

"figures omitted#, and !(k)/$%& is close to 1. In the study of
the universal features of small-scale statistics of turbulence,

if there are any, it is desirable to simulate or realize an iner-

tial subrange exhibiting "i#–"iii# rather than "i#– "iii#. The
present results suggest that a resolution at the level of Run

2048-1 is required for such a simulation. Such DNSs are

expected to provide valuable data for the study of turbulence,

and in particular for improving our understanding of possible

universality characteristics in the inertial subrange.

These considerations motivate us to revisit another

simple but fundamental question of turbulence: ‘‘Does the

energy spectrum E(k) in the inertial subrange follow Kol-

mogorov’s k!5/3 power law at large Reynolds numbers?’’

Figure 5 shows the compensated energy spectrum for the

present DNSs "the data were plotted in a slightly different
manner in our preliminary report4#. From the simulations

with up to N"1024, one might think that the spectrum in the
range given by

E"k #"K0%
2/3k!5/3 "1#

with the Kolmogorov constant K0"1.6–1.7 is in good

agreement with experiments and numerical simulations "see,
for example, Refs. 1, 3, 9, and 10#. However, Fig. 5 also
shows that the flat region, i.e., the spectrum as described by

"1#, of the runs with N"2048 and 4096 is not much wider
than that of the lower resolution simulations. The higher

resolution spectra suggest that the compensated spectrum is

not flat, but rather tilted slightly, so that it is described by

E"k #'%2/3k!5/3!(k, "2#

with (k)0.
The detection of such a correction to the Kolmogorov

scaling, if it in fact exists, is difficult from low-resolution

DNS databases. The least square fitting of the data of the

40963 resolution simulation for (d/d log k)logE(k) to

(!5/3!(k)log k#b (b is a constant# in the range 0.008
$k*$0.03 gives (k"0.10. The slope with (k"0.10 is
shown in Fig. 5.

It may be of interest to observe the scaling of the second

order moment of velocity, both in wavenumber and physical

space. For this purpose, let us consider the structure function

S2"r#"$!v"x#r,t #!v"x,t #!2&,

where S2 may, in general, be expanded in terms of the

spherical harmonics as

S2"r#" +
n"0

,

+
m"!n

n

f nm"r #Pn
m"cos -#eim..

Here, r"!r! and -,. are the angular variables of r in spheri-
cal polar coordinates, Pn

m is the associated Legendre polyno-

mial of order n ,m , and f nm(" f n ,!m
* ) is a function of only r ,

where the asterisk denotes the complex conjugate. The time

argument is omitted. For S2 satisfying the symmetry S2(r)

"S2(!r), we have f km"0 for any odd integer k . In strictly
isotropic turbulence, f nm must be zero not only for odd n ,

but also for any n and m except n"m"0. However, our
preliminary analysis of the DNS data suggests that the an-

isotropy is small but nonzero. In such cases, f nm is also small

but nonzero, and S2 itself may not be a good approximation

for f 0" f 00 . To improve the approximation for f 0 , one

might, for example, take the average of S2 over r/r

FIG. 3. Normalized energy dissipation rate D versus R/ from Ref. 5 "data
up to R/"250), Ref. 3 "!,"#, and the present DNS databases "#,$#.

FIG. 4. !(k)/$%& obtained from Run 2048-1.

FIG. 5. Compensated energy spectra from DNSs with "A# 5123, 10243, and
"B# 20483, 40963 grid points. Scales on the right and left are for "A# and "B#,
respectively.
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The standard bottleneck may be viewed as an aborted thermalization 

α

α = 1

Kaneda et al. 2003 (Earth 
Simulator). Compensated energy 
spectrum

Thermalization  is accompanied by Gaussianization and isotropization

Spurious effects are expected: depletion of intermittency and  isotropization



 Hyperviscosity and 
Galerkin truncation for 
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∂tv + v∂xv = −µkG
−2α(−∂2

x)αv

µ > 0, kG > 0, α = dissipativity



Hyperviscous and Galerkin-truncated Burgers

0 1 2 3 4 5 6 7
!1

!0.5

0

0.5

1

x

u(x
)

Figure 1: At time t = 0.5.
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Figure 2: At time t = 1.0.

We show the evolution of the velocity field u(x) in real space at different
times for system size N = 210 = 1024 and time-step δt = 5 × 10−6.
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Figure 3: At time t = 2.0.
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Figure 4: At time t = 3.0.
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Figure 3: At time t = 2.0.
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Figure 4: At time t = 3.0.
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hyperviscous

Burgers equation with random initial condition

u0(x) = sin x + sin(2x + φ)

uniformly distributed in φ [−π, π]

Energy spectrum averaged over 20 realizations

Evolution of Galerkin-truncated

initial condition sinx

Galerkin-truncated Burgers first studied by Majda and Timofeyev 2000



The shock acts as a black hole
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Figure 5: At time t = 0.99.

0 1 2 3 4 5 6 7
!1.5

!1

!0.5

0

0.5

1

1.5

x

u(x
)

t = 1.00

Figure 6: At time t = 1.00.
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Figure 5: At time t = 0.99.
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Figure 6: At time t = 1.00.
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Figure 7: At time t = 1.01.
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Figure 8: At time t = 1.02.
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Figure 7: At time t = 1.01.
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Figure 8: At time t = 1.02.
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Figure 9: At time t = 1.03.
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Figure 10: At time t = 1.04.
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Figure 9: At time t = 1.03.
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Figure 10: At time t = 1.04.

5

0 1 2 3 4 5 6 7
!1.5

!1

!0.5

0

0.5

1

1.5

x

u(x
)

 

 

t = 1.05

Figure 11: At time t = 1.05.
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Figure 12: At time t = 1.10.
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Figure 11: At time t = 1.05.
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Figure 12: At time t = 1.10.
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kG = 342

resolution 210

Are these genuine shocks? Mathematical question:
do the solutions of the inviscid truncated Burgers eq. 
converge to the “entropy solution” when                   ?kG →∞
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