Galerkin truncation, hyperviscosity and bottlenecks

Uriel Frisch Observatoire de la Côte d'Azur, Nice

with W. Pauls (Goettingen), A. Wirth (Grenoble), **S. Kurien and J.-Z. Zhu (Los Alamos),** R. Pandit and S.S. Ray (Bangalore)

Hyperviscous equations

Burgers $\partial_t v + v \partial_x v = -\mu k_G^{-2\alpha} (-\partial_x^2)^{\alpha} v$ $\mu > 0, \quad k_G > 0, \quad \alpha = \text{dissipativity. Here} \quad \alpha > 1.$

N-S
$$\partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} = -\nabla p - \mu k_{\rm G}^{-2\alpha} (-\nabla^2)^{\alpha} \boldsymbol{v}, \quad \nabla \cdot \boldsymbol{v} = 0$$

Dissipation rate $\mu (k/k_{\rm G})^{2\alpha} \rightarrow 0 \text{ or } \infty \text{ when } \alpha \rightarrow \infty$

Abstract form $\partial_t v = B(v, v) + L_{\alpha} v$

Galerkin truncation $\partial_t u = P_{k_G} B(u, u), \qquad u_o = P_{k_G} v_0$

Projector $P_{k_{G}}$: low-pass filter at wavenumber k_{G}

Large dissipativity limit and thermalization

For $\alpha \to \infty$, and fixed μ and $k_{\rm G}$, the solution of the hyperdissipative equations tend to the solution of the Galerkin-truncated equations

⁸We may regard this as the introduction of infinite damping (infinite resistance) for the degrees of freedom removed.

True for: Burgers, Navier-Stokes, MHD, DIA and EDQNM. False for: MRCM and resonant wave interaction theory.

Galerkin-truncation \Rightarrow thermalization (Lee, 1952; Hopf, 1952; Kraichnan, 1958)

Galerkin-truncated Burgers first studied by Majda and Timofeyev 2000

Galerkin-truncated 3D incompressible Euler first studied at high resolution by Cichowlas, Bonaiti, Debbasch and Brachet 2005

Cichowlas et al. (2005) "reproduced" by Bos and Bertoglio (2006) with EDQNM

Eddy-Damped Quasi-Normal Markovian spectrum

 $\left(\frac{\partial}{\partial t} + 2\nu k^2 \right) E(k,t) =$ $\iint_{\Delta_k} dp dq \theta_{kpq} b(k,p,q) \frac{k}{pq} E(q,t) \left[k^2 E(p,t) - p^2 E(k,t) \right]$

"QN" --- Chou(1940), Millionshtchikov(1941): realizability problem "N" --- Lee (1952), Hopf(1952): statistics of absolute equilibria of truncated Euler DIA (Kraichnan): tractability problem "ED", "M" --- Orszag(1970, 1977)

convergence to Galerkin truncation and secondary bottleneck ...

Bottleneck, thermalization, depletion of intermittency, etc

The standard $\ lpha=1$ bottleneck may be viewed as an aborted thermalization

Spurious effects are expected: depletion of intermittency and isotropization

Hyperviscosity and Galerkin truncation for the Burgers equation

Samriddhi Sankar Ray Indian Institute of Science, Bangalore

with U. Frisch (Nice) and R. Pandit (Bangalore)

$$\partial_t v + v \partial_x v = -\mu k_{\rm G}^{-2\alpha} (-\partial_x^2)^{\alpha} v$$

 $\mu > 0, \quad k_{\rm G} > 0, \quad \alpha = {\rm dissipativity}$

Hyperviscous and Galerkin-truncated Burgers

do the solutions of the inviscid truncated Burgers eq. converge to the "entropy solution" when $k_{\rm G} \to \infty$?

Hyperviscous Navier-Stokes

 64^3 DNS