

Extreme Lagrangian acceleration

in confined turbulent flow

Benjamin Kadoch¹ – Wouter Bos^{1,2} – Kai Schneider¹ ¹M2P2 Marseille & ²LMFA Lyon France 01 Avril 2008 – GDR turbulence 2008 Introduction

Extreme Lagrangian acceleration in confined turbulent flow

- * Turbulent transport and mixing \rightarrow Lagrangian point of view.
- * Many applications quasi 2D (geophysical flows, plasmas with a strong magnetic field) and 2D first approach \rightarrow <u>2D Turbulence</u>.
- * Practically all flows bounded \rightarrow Influence of walls on dynamics (many works focused on Eulerian dynamics).

\rightarrow Influence of solid boundaries on Lagrangian dynamics

Extreme Lagrangian acceleration in confined turbulent flow

Numerical simulation

* Two distinct geometries :

a biperiodic and a circular domain with no-slip boundary conditions.

* Direct numerical simulation using classical pseudo-spectral method.

*
$$\frac{\partial \vec{\omega}}{\partial t} + \vec{u} \cdot \nabla \vec{\omega} - \nu \nabla^2 \vec{\omega} = 0$$

where \vec{u} the velocity, $\omega = \nabla \times \vec{u}$ the vorticity and ν the kinematic viscosity.

Numerical simulation

* Two distinct geometries :

a biperiodic and a circular domain with no-slip boundary conditions.

* Direct numerical simulation using classical pseudo-spectral method.

*
$$\frac{\partial \vec{\omega}}{\partial t} + \vec{u} \cdot \nabla \vec{\omega} - \nu \nabla^2 \vec{\omega} + \nabla \wedge \left(\frac{1}{\eta}(\chi \vec{u})\right) = 0$$

where χ is the mask function is 1 outside the flow-domain and 0 inside the flow and η the permeability.

- * Volume penalization method
 - P. Angot & all Numer. Math.(1999).
 - K. Schneider Comput. Fluids (2005).

Extreme Lagrangian acceleration in confined turbulent flow

- * freely decaying turbulence, resolution : 1024^2 .
- * Semi-implicit time integration $\Delta t = 5.10^{-5}$, permeability $\eta = 10^{-3}$.
- * Viscosity $\nu = 10^{-4}.$
- * Initial Reynolds number $Re \sim 5 \cdot 10^4$.
- * Duration : 500000 timesteps.

K. Schneider & M. Farge Phys. Rev. Lett. (2005). Similar confined flow

Lagrangian quantities

* Interpolation of the Eulerian quantities

Integration in time using a second order Runge-Kutta scheme

- * Lagrangian acceleration : $ec{a}_L = abla p +
 u
 abla^2 ec{u}$.
- * 1020 Trajectories
- * Decaying turbulence \rightarrow need to make stationary the statistics : Lagrangian quantities L(t) are divided by their instantaneous standard deviation computed from all particles at each time : $L(t)/\sigma_L(t)$ P.K. Yeung *Annu. Rev. Fluid Mech.* (2002)

(a) Periodic geometry

(b) Circular geometry

FIG. 1: Snapshots of vorticity fields.

Extreme Lagrangian acceleration in confined turbulent flow

FIG. 2: Trajectory colored with $|\vec{a}_L(t)|/max(|\vec{a}_L(t)|)$, where $max|\vec{a}_1| = 3.6$, $max|\vec{a}_2| = 11.7$ and $max|\vec{a}_3| = 33.3$ for the particles 1, 2 and 3, respectively.

FIG. 3: Trajectory colored with $|\vec{a}_L(t)|/max(|\vec{a}_L(t)|)$, where $max|\vec{a}_1| = 3.6$, $max|\vec{a}_2| = 11.7$ and $max|\vec{a}_3| = 33.3$ for the particles 1, 2 and 3, respectively.

FIG. 4: Trajectory colored with $|\vec{a}_L(t)|/max(|\vec{a}_L(t)|)$, where $max|\vec{a}_1| = 3.6$, $max|\vec{a}_2| = 11.7$ and $max|\vec{a}_3| = 33.3$ for the particles 1, 2 and 3, respectively.

FIG. 5: Trajectory colored with $|\vec{a}_L(t)|/max(|\vec{a}_L(t)|)$, where $max|\vec{a}_1| = 3.6$, $max|\vec{a}_2| = 11.7$ and $max|\vec{a}_3| = 33.3$ for the particles 1, 2 and 3, respectively.

FIG. 6: PDFs of normalized Lagrangian velocities u_L/σ_{u_L} where $\sigma_{u_L} = \langle u_L^2 \rangle^{1/2}$ ($\langle \cdot \rangle$ denotes the ensemble average), for the periodic geometry and for the circular geometry.

FIG. 7: PDFs of normalized Lagrangian velocity increments $\Delta u_L(\tau)/\sigma(\tau)$ where $\sigma(\tau) = \langle (\Delta u_L(\tau))^2 \rangle^{1/2}$, for periodic (left) and circular geometry (right).

FIG. 8: Flatness of the Lagrangian velocity increments as a function of τ for the periodic and circular geometry.

10⁰

10⁻¹

10⁻²

10⁻³

10⁻⁴

10⁻⁵

10⁻⁶

-20

σ_{aL}P(a_L/σ_{aL})

10

20

-10

0

 a_L/σ_{a_l}

Conditional statistics

FIG. 10: Trajectories in the circular geometry. The trajectories are divided into particles inside and outside the disk defined by the radius r_0 (circle in dotted line).

FIG. 11: Conditional flatness of the Lagrangian acceleration as a function of radius r_0/R .

 \rightarrow Lagrangian boundary layer thickness δ_L defined by a critical radius $r_0/R = 0.3$.

- * Lagrangian acceleration in periodic case in 2D similar to 3D.
- * Influence of no-slip boundaries on Lagrangian velocity and acceleration :
 - no significant influence on Lagrangian velocity except the small cusp around zero in the PDF.
 - heavy tails in the Lagrangian acceleration PDF \rightarrow extreme values .
- * Conditional statistics :
 - presence of a Lagrangian boundary layer thickness.
 - Influence of the wall in approximatively 90% of the domain surface.
- * B. Kadoch; W.J.T. Bos; K. Schneider Phys. Rev. Lett. (2008) accepted

Future work

- Influence of Reynolds number
- Comparison with Eulerian quantities
 Eulerian acceleration Vs Lagrangian acceleration
- 3D \rightarrow careful reassessment in experimental results influence of the wall with conditional statistics in experience?