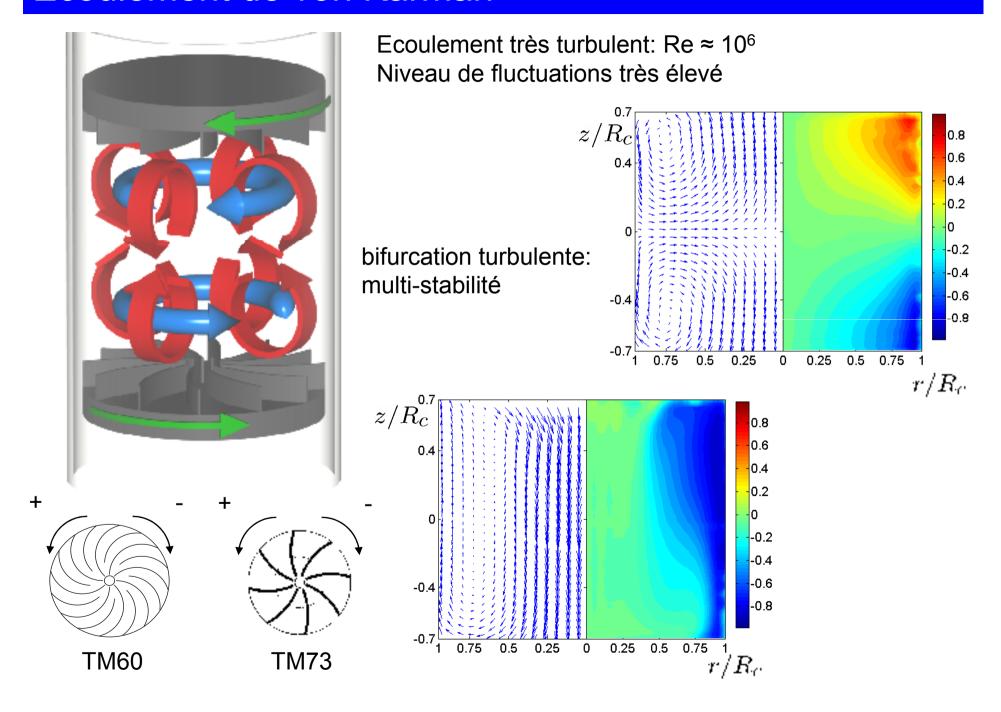
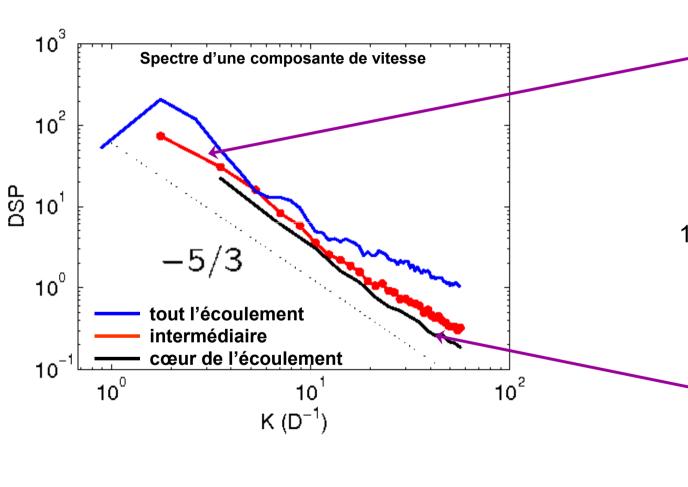
Mécanique statistique dans un écoulement de von Kármán turbulent

Romain Monchaux, P. Diribarne, F. Ravelet, P-P. Cortet, P-H. Chavanis, B. Dubrulle, N. Leprovost, F. Daviaud and A. Chiffaudel

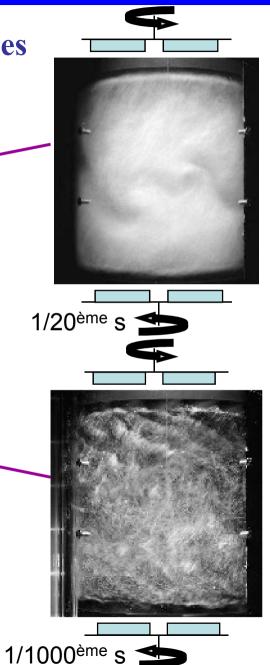
Ecoulement de von Kármán



Systèmes hors-équilibre vs. équilibres classiques



Existence d'un grand nombre de degrés de liberté



Turbulence 2D: états stationnaires, équation d'état, distributions

- Tourbillons ponctuels: Onsager 1949
- Miller, Robert and Sommeria: description continue (1990-1991)

De la turbulence 2D à la turbulence 3D

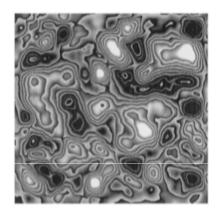
- Problème complet 3D: question ouverte
 - → étirement de la vorticité
- -Turbulence axisymétrique: bon intermédiaire
 - \Rightarrow description 2D
 - → caractéristiques 3D

Equation d'Euler 2D : états d'équilibre statistique

- Classification des tourbillons isolés: monopoles et dipoles
- Diagrammes de stabilité de ces structures: paramètre de contôle unique

Chavanis et Sommeria

J. Fluid Mech. 356 p259, 1998



Mécanique statistique quasi 2D

- Jets intenses
- Grande tache rouge

Sommeria *et al.*CRAS **312** p999, 1991
J. Fluid Mech. **464** p165, 2002

Mécanique statistique et turbulence axisymétrique

Nouveaux principes variationels

- Equation d'Euler axisymétrique sans forçage ni dissipation.
- Probabilité $ho(\sigma, \xi, \vec{r})$ d'observer le moment cinétique σ et la vorticité $\xi = -\omega_{\theta}/r$ au point \vec{r} .
- Maximisation d'une entropie de mélange sous contrainte des grandeurs conservées.
- Equilibre à une échelle coarse-grained.

Distribution de Gibbs

$$\rho = \frac{e^{-\beta(\sigma^2/2r^2 + \psi\xi) - \alpha G(\sigma) - \mu\xi F(\sigma)}}{Z(r,z)} \begin{cases} \sigma = F(\Psi) \\ \xi - \frac{FF'}{2y} = G(\Psi) \end{cases}$$

Etats stationnaires

$$\begin{cases} \sigma &= F(\Psi) \\ \xi - \frac{FF'}{2y} &= G(\Psi) \end{cases}$$

$$(\mu,eta)$$
:multiplicateurs de Lagrange
associés à l'énergie et à l'hélicité

$$\sigma$$
: moment cinétique ξ : vorticité ψ : fonction de source.

Mécanique statistique et Beltrami

Approches de champ moyen

- variations de σ à ξ fixé
- variations de ξ à σ fixé

Monchaux et al. soumis à Phys. Rev. Lett. 2008

Etats stationnaires

$$\beta_{\xi}\overline{\psi} + \mu_{\xi}\overline{\sigma} = 0,$$
$$\frac{\beta_{\sigma}\overline{\sigma}}{r^2} + \mu_{\sigma}\overline{\xi} = 0,$$

$$\frac{\beta_{\xi}\overline{\sigma}}{r^2} + \mu_{\xi}\overline{\xi} = 0.$$

Relations de fluctuation

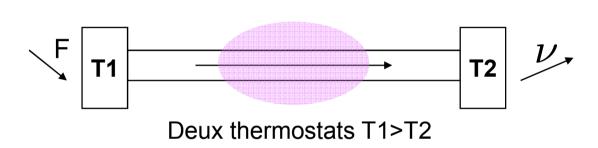
$$\overline{\sigma^2} - \overline{\sigma}^2 = -\frac{1}{\mu_{\xi}} \frac{\delta \overline{\sigma}}{\delta \overline{\xi}},$$
$$\overline{\xi^2} - \overline{\xi}^2 = -\frac{1}{\mu_{\sigma}} \frac{\delta \overline{\xi}}{\delta \overline{\sigma}}.$$

$$\sigma$$
: moment cinétique ξ : vorticité ψ : fonction de courant

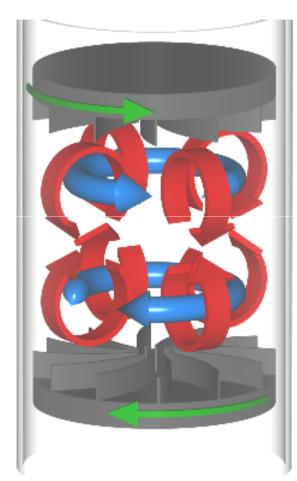
$$(\mu,eta)$$
:multiplicateurs de Lagrange
associés à l'énergie et à l'hélicité

Ecoulement de von Kármán expérimental

Que se passe-t-il en présence de forçage et de dissipation?

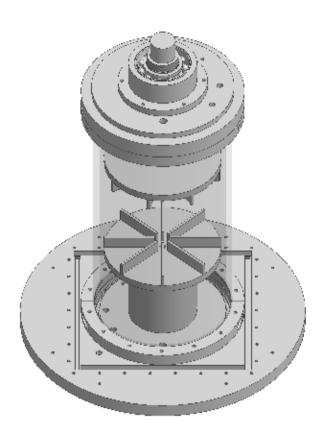


⇒ Expérience



Expérience et mesures

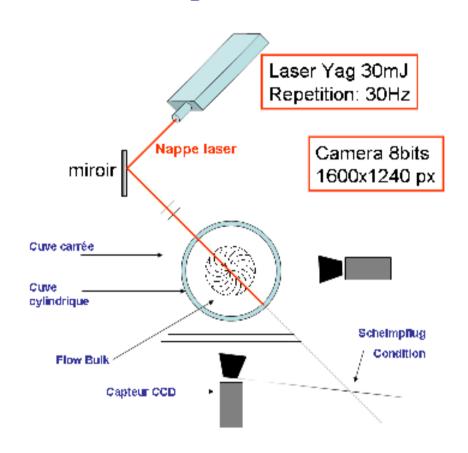
Montage VK2



2 moteurs 1.8kW Fréquences: 1-8Hz

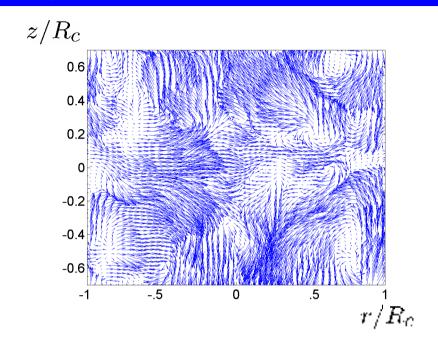
Re: 10⁵-6.10⁵

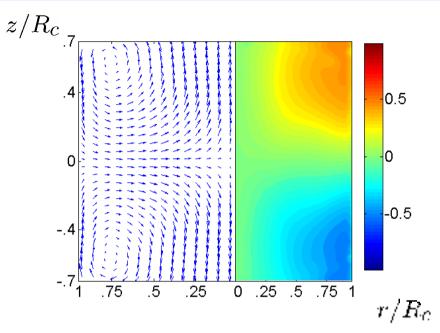
Dispositif SPIV



Typiquement 5000 instantannés Fréquence d'acquisition: 1-6Hz Résolution spatiale: 1.6mm

Expérience et mesures





Mesures SPIV

trois composantes de vitesse:

$$(V_r, V_\theta, V_z)$$

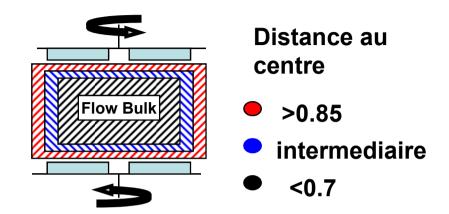
Post-traitement

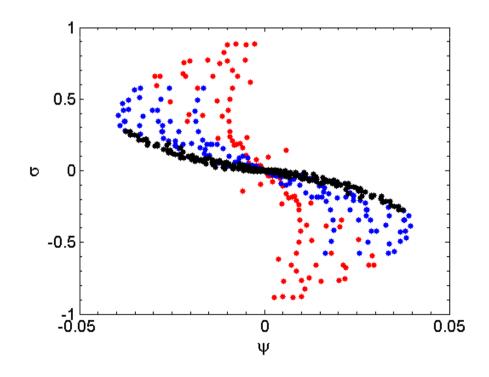
trois champs statistique:

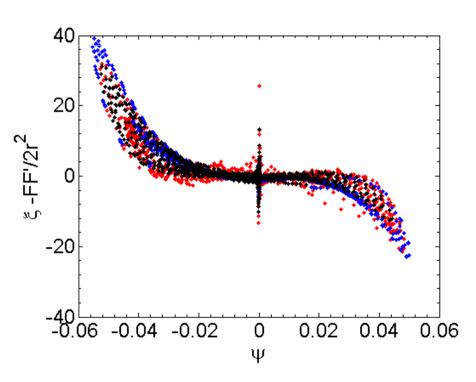
$$(\psi,\sigma,\xi)$$

Existence des relations

$$\begin{cases} \sigma &= F(\Psi) \\ \xi - \frac{FF'}{2y} &= G(\Psi) \end{cases}$$

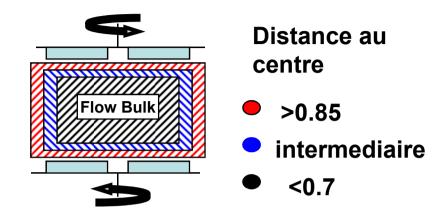


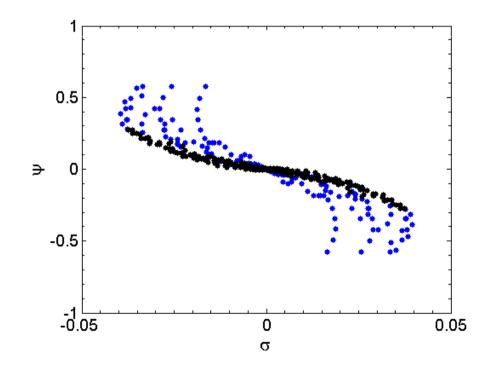


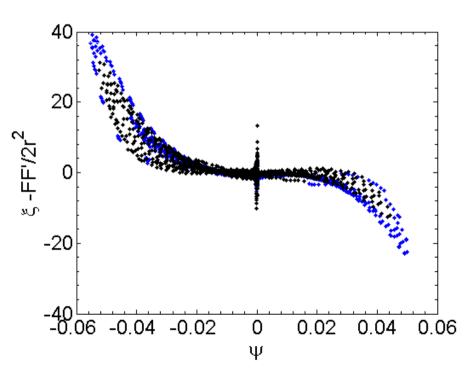


Existence des relations

$$\begin{cases} \sigma &= F(\Psi) \\ \xi - \frac{FF'}{2y} &= G(\Psi) \end{cases}$$

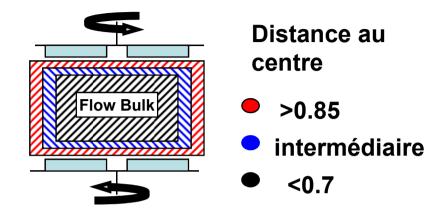


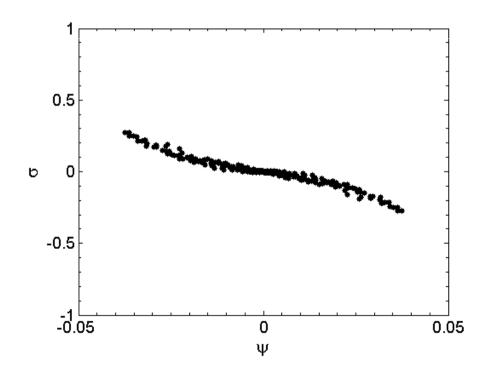


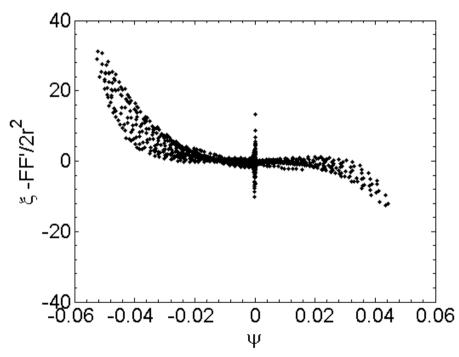


Existence des relations

$$\begin{cases}
F(\psi) = F_{p_1}\psi + F_{p_3}\psi^3 \\
G(\psi) \equiv 0
\end{cases}$$

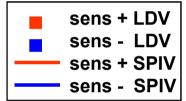


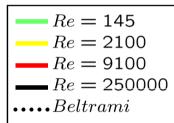


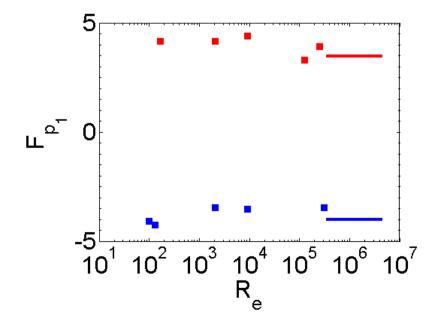


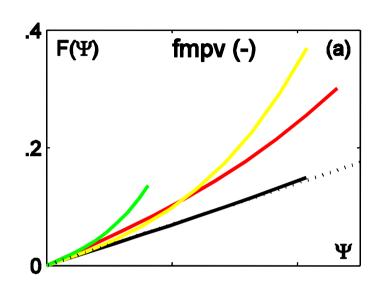
Influence de la viscosité

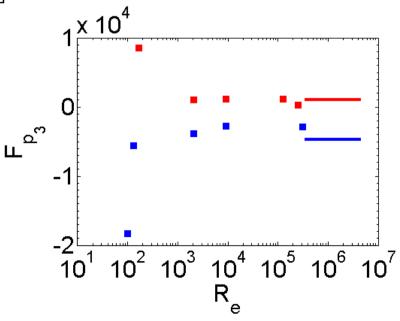
$$F(\psi) = F_{p_1}\psi + F_{p_3}\psi^3$$











Beltramisation: alignement vitesse-vorticité

Écoulement de Beltrami

Une solution stationaire des équations d'Euler

$$\vec{\mathbf{v}} = \lambda \vec{\omega}$$

F linéaire:

$$\sigma = \lambda \psi$$

0.8

G nulle:

$$\xi - \frac{\lambda^2 \sigma}{r^2} \equiv 0$$

Beltrami bruité

0.6

0.8

 $\exists \; \psi/\psi_{max}$

États stationnaires

Moment cinétique:

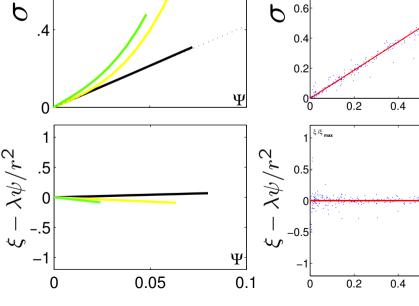
$$\sigma = F(\psi)$$

Vorticité:

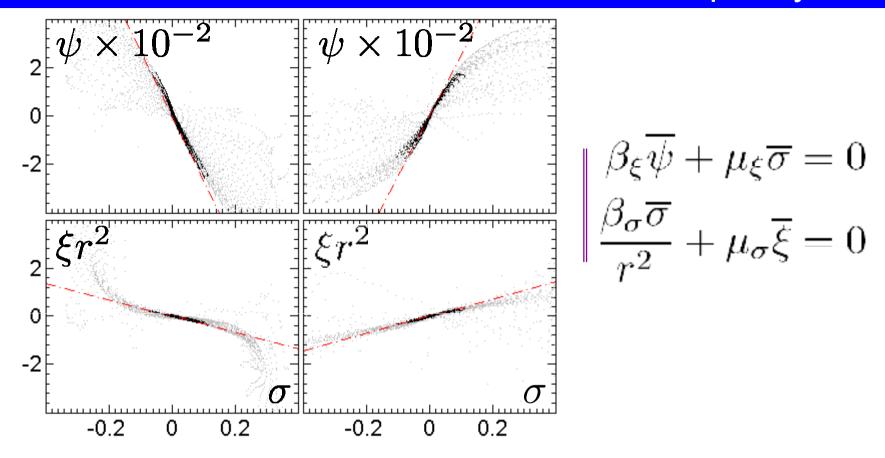
$$\xi - \lambda \psi / r^2 = G(\psi)^{\gamma}_{\tilde{\beta}}$$

Von Kármán

.8_{F(Ψ)}



Limite Beltrami: états stationnaires et champ moyen



Impellers	TM73		TM60	
Sense	(+)	(-)	(+)	(-)
eta_{ξ}/μ_{ξ}	$4,64 \pm 0,25$	$-4,92 \pm 0,12$	$3,76 \pm 0,28$	$-4,11 \pm 0,31$
$\beta_{\sigma}/\mu_{\sigma}$	$4,31 \pm 0,20$	$-4,88 \pm 0,17$	$3,55\pm0,20$	$-3,61 \pm 0,23$
$$	$4,47 \pm 0,22$	$-4,90 \pm 0,15$	$3,66 \pm 0,24$	$-3,86 \pm 0,27$

Limite Beltrami: relations de fluctuation-dissipation

Relations de fluctuation

$$\overline{\sigma^2} - \overline{\sigma}^2 = -\frac{1}{\mu_{\xi}} \frac{\delta \overline{\sigma}}{\delta \overline{\xi}},$$

$$\overline{\xi^2} - \overline{\xi}^2 = -\frac{1}{\mu_\sigma} \frac{\delta \xi}{\delta \overline{\sigma}}.$$

$\overline{\sigma^2} - \overline{\sigma}^2 = -\frac{1}{\mu_{\xi}} \frac{\delta \overline{\sigma}}{\delta \overline{\xi}},$ $\overline{\xi^2} - \overline{\xi}^2 = -\frac{1}{\mu_{\sigma}} \frac{\delta \overline{\xi}}{\delta \overline{\sigma}}. \implies \begin{array}{c} \text{problème de mesure} \\ \text{de la réponse} \end{array}$ de la réponse

Formulation pratique

$$\overline{u_{\theta}^{2}} - \overline{u_{\theta}}^{2} = \frac{1}{\beta_{\xi}},$$

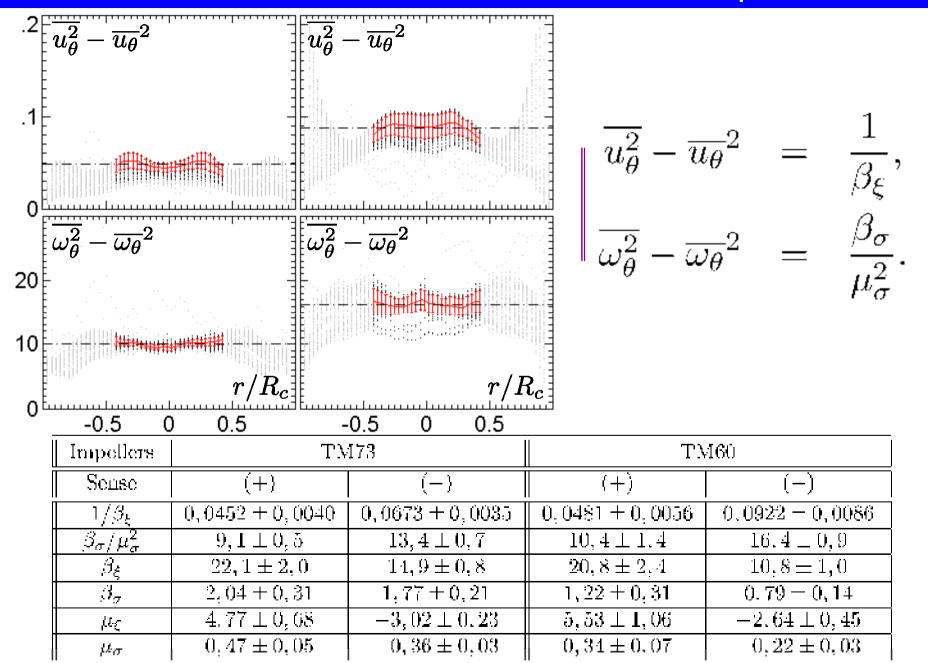
$$\overline{\omega_{\theta}^{2}} - \overline{\omega_{\theta}}^{2} = \frac{\beta_{\sigma}}{\mu_{\sigma}^{2}}.$$

$$\overline{\omega_{\theta}^2} - \overline{\omega_{\theta}}^2 = \frac{\beta_{\sigma}}{\mu_{\sigma}^2}.$$

 σ : moment cinétique ξ : vorticité $\dot{\psi}$: fonction de courant

 (μ,eta) :multiplicateurs de Lagrange associés à l'énergie et à l'hélicité

Limite Beltrami: relations de fluctuation-dissipation



Etats stationnaires

Observations expérimentale des fonctions F et G Grande reproductibilité des mesures Beltramisation à haut Reynolds

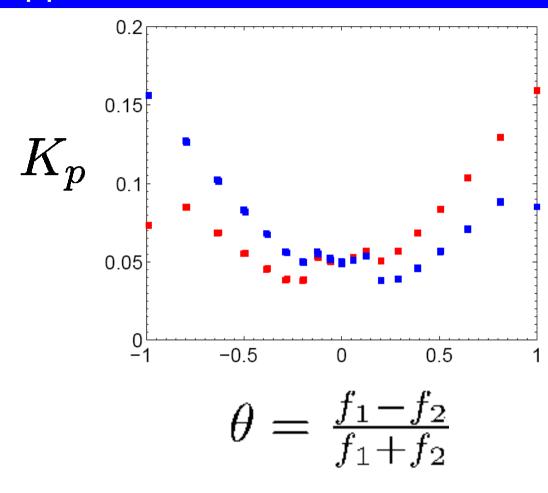
Fluctuations

Dérivations de deux relations de fluctuation-dissipation Mesures dans l'écoulement de von Karman Distinction des deux approches de champ moyen

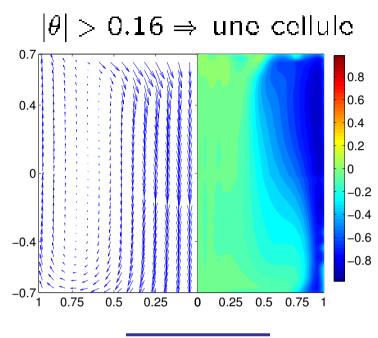
Perspectives

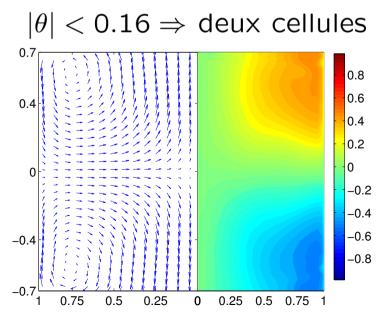
Faire le lien avec la bifurcation turbulente Test dans d'autres écoulements (granulaires, TC, ...)

Application à la bifurcation turbulente



Etude par des mesures de couple (Ravelet, Marié)

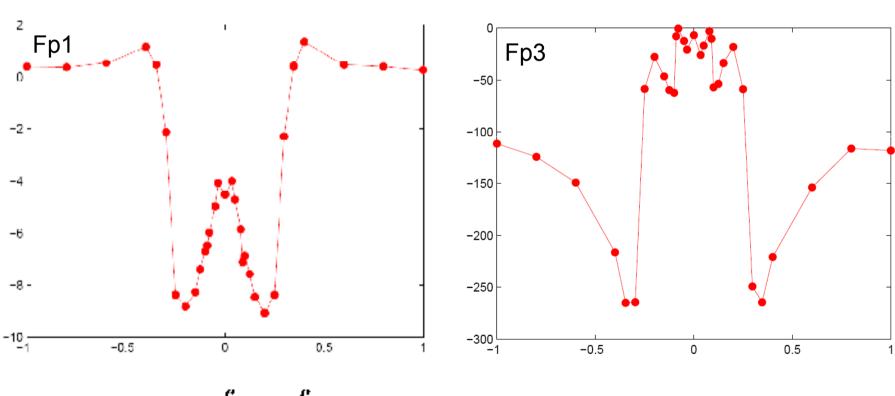




Application à la bifurcation turbulente

Etats stationnaires

$$F(\psi) = F_{p_1}\psi + F_{p_3}\psi^3 \begin{cases} \sigma = F(\Psi) \\ \xi - \frac{FF'}{2y} = G(\Psi) \end{cases}$$



$$\theta = \frac{f_1 - f_2}{f_1 + f_2}$$

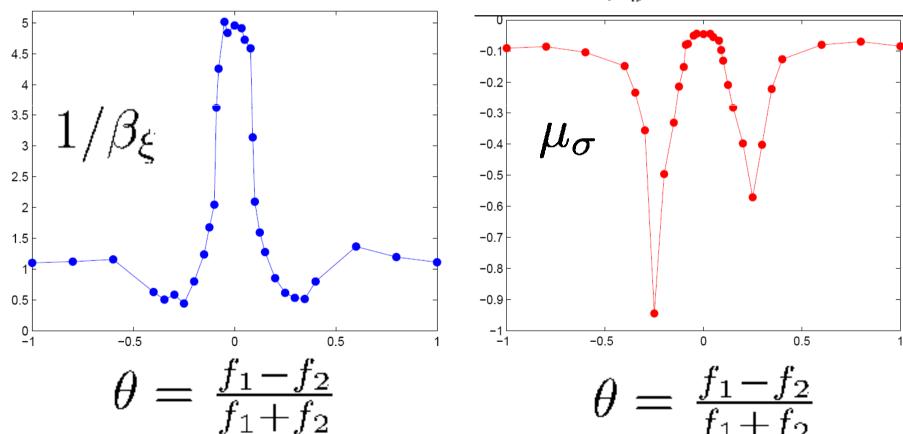
$$\theta = \frac{f_1 - f_2}{f_1 + f_2}$$

Application à la bifurcation turbulente

Fluctuations

$$\overline{u_{\theta}^2} - \overline{u_{\theta}}^2 = \frac{1}{\beta_{\xi}},$$

$$\overline{\omega_{\theta}^2} - \overline{\omega_{\theta}^2} = \frac{\beta_{\sigma}}{\mu_{\sigma}^2}$$



Température et mesure des fluctuations

