Turbulence lagrangienne, traceurs et particules

Aurore Naso

Groupe Instabilités et Turbulence, Service de Physique de l'État Condensé (CNRS & CEA Saclay)

GdR Turbulence, Lyon, 2/04/08

Pourquoi adopter le point de vue lagrangien?

Formulation naturelle pour le transport (1 part.) et le mélange (> 1 part.) turbulents

- \rightarrow formation des nuages, polluants, ...
- \rightarrow réacteurs, combustion, ...

Traceurs passifs / Particules inertielles

Traceurs passifs:

- ✓ Autre approche de la turbulence (écoulement, scalaire passif)
- ✓ Intermittence, universalité
- ✓ Importance de l'accélération (1 part.):
 - \rightarrow W. Bos
- ✓ Modélisation des gradients de pression (4 part.):
 - \rightarrow A. Naso

Particules lourdes ou légères:

- Équations de la dynamique mal connues (taille finie)
- ✓ Dynamique d'une particule (exp.):
 - \rightarrow R. Volk \rightarrow N. M. Qureshi
- Distributions spatiales non triviales, effets collectifs (num.):
 - \rightarrow J. Bec \rightarrow E. Calzavarini \rightarrow L. Ducasse

Difficultés de l'approche lagrangienne

✓ <u>Expériences:</u>

- traceurs passifs (taille, densité)
- situer et suivre une particule
- très grandes résolutions temporelle ($T_L/\tau_\eta \sim 1000$), spatiale pour imaging (L/ $\eta \sim 4000$), en fréquence pour Doppler

✓ <u>Simulations:</u>

- champ eulérien très précis
- schéma d'interpolation précis et lisse
- pour N particules, indépendance statistique

✓ <u>Modélisation:</u>

- déformation d'un élément de fluide très rapide \rightarrow approches stochastiques
- non localité du gradient de pression

Lois d'échelles attendues (THI):

lois d'échelles des incréments de vitesse dans la gamme inertielle

Eulérien:

- ✓ Incréments de vitesse ($\eta << r << L$): $S_p^E(r) = \langle (v(\mathbf{x} + \mathbf{r}) - v(\mathbf{x}))^p \rangle$
- ✓ Prédiction dimensionnelle:

$$S_p^E(r)\sim (arepsilon r)^{\xi_p};\;\;\xi_p=p/3$$

✓ En particulier:

$$S_3^E(r) = -\frac{4}{5}\varepsilon r$$

(se dérive exactement de von Kármán-Howarth)

Lagrangien:

- ✓ Incréments de vitesse ($\tau_{\eta} << \tau << T_{L}$): $D_{p}^{L}(\tau) = \langle (v(t + \tau) - v(t))^{p} \rangle$
- ✓ Prédiction dimensionnelle:

$$D_p^L(\tau) \sim (\varepsilon \tau)^{\zeta_p}; \ \zeta_p = p/2$$

✓ En particulier:

$$D_2^L(\tau) = C_0 \varepsilon \tau$$

✓ Moments impairs nuls.

Lois d'échelles attendues (THI): spectres de puissance et accélération

Eulérien:

• Spectre de puissance ($\eta \ll L$):

$$E^E(k) \sim \varepsilon^{2/3} k^{-5/3}$$

Lagrangien:

✓ Spectre de puissance ($\tau_{\eta} << \tau << T_L$):

$$E^L(\omega) \sim \varepsilon \omega^{-2}$$

✓ Statistiques à petite échelle:

$$\langle a_i a_j \rangle = a_0 \varepsilon^{3/2} \nu^{-1/2} \delta_{ij}$$

Quantités importantes en turbulence lagrangienne: accélération et gradient de pression

ACCÉLÉRATION d'une particule de fluide = paramètre naturel.

<u>Yeung, PoF 1997</u>: les accélérations d'une paire de particules initialement proches peuvent rester corrélées sur des temps >> τ_n .

Vedula & Yeung, PoF 1999:

$$\mathbf{a} = \frac{D\mathbf{u}}{Dt} = -\frac{1}{\rho}\nabla p + \nu\nabla^2 \mathbf{u} = \mathbf{a}_{\mathbf{p}} + \mathbf{a}_{\mathbf{v}} \longrightarrow \text{à grand Re: } \mathbf{a} \sim \mathbf{a}_{\mathbf{p}}$$

Les fluctuations de **GRADIENT DE PRESSION** ont des échelles de longueur eulériennes >> η (quantité non locale !!!)

Autre résultat (DNS, $R_{\lambda} \le 235$): < a^2 > dévie de K41, et est non universel, ~ $R_{\lambda}^{1/2}$ (∇p)

En fait le spectre de pression K41 ne peut être observé qu'à $R_{\lambda} > 600$ (Bec *et al*, PRL 2007).

Accélération (1 part.) / Gradient de pression ($N \ge 4$ part.)

(voir Xu, Ouellette, Vincenzi & Bodenschatz, PRL 2007)

Statistiques d'une (ou 2) particules

Mesures d'accélérations: PDF

<u>Cornell: La Porta et al, Nature 2001</u> « silicon strip detectors »

et Lyon: Volk, Mordant, Verhille & Pinton, 2008 (laser Doppler)

- PDF d'accélération symétriques et fortement non gaussiennes (très grandes accélérations)
- ✓ Forme limite à haut Reynolds ($R_{\lambda} \ge 600$)

✓ Mesure de
$$\mathbf{a}_0 \sim \mathbf{6}$$

 $\left(\langle a_i a_j \rangle = a_0 \varepsilon^{3/2} \nu^{-1/2} \delta_{ij} \right)$

Mesures d'accélérations: autocorrélation

Mordant, Lévêque & Pinton, NJP 2004, PRL 2002 Mordant, Crawford & Bodenschatz, PRL 2004

- ✓ composantes de l'accélération corrélées sur ~ τ_{η}
- \checkmark amplitude corrélée sur \sim T_L
- ✓ piégeage dans des vortex !

Mesures de vitesses: spectre

Mordant, Metz, Michel & Pinton, PRL 2001

(Doppler ultrasonore)

Comme prévu par K41, il existe une gamme d'échelles pour lesquelles:

$$E^L(\omega) \sim \varepsilon \omega^{-2}$$

Mesures de vitesses: incréments

Mordant, Metz, Michel & Pinton, PRL 2001

(Doppler ultrasonore)

✓ PDF symétriques

 ✓ Gaussienne à grande échelle, puis de plus en plus large quand r↓
 → intermittence

✓ Mesure de
$$C_0 \sim 3$$

 $\left(D_2^L(\tau) = C_0 \varepsilon \tau\right)$

Mêmes résultats en DNS (Mordant, Lévêque & Pinton, NJP 2004)

Description multifractale (Chevillard et al, PRL 2003)

Universal intermittent properties of particle trajectories in highly turbulent flows

International Collaboration for Turbulence Research, A. Arnèodo,¹ J. Berg,² R. Benzi,³ L. Biferale^{*},³ E. Bodenschatz,⁴ A. Busse,⁵ E. Calzavarini,⁶ B. Castaing,¹ M. Cencini^{*},⁷ L. Chevillard,¹ R. Fisher,⁸ R. Grauer,⁹ H. Homann,⁹ D. Lamb,⁸ A. S. Lanotte^{*},¹⁰ E. Lévèque,¹ B. Lüthi,¹¹ J. Mann,² N. Mordant,¹² W.-C. Müller,⁵ S. Ott,² N. T. Ouellette,¹³ J.-F. Pinton,¹ S. B. Pope,¹⁴ S. G. Roux,¹ F. Toschi^{*},^{15,16} H. Xu,⁴ and P. K. Yeung¹⁷

Dispersion relative de 2 particules

Loi de Richardson:
$$\left< r^2 \right> = g arepsilon t^3$$

Scaling de Richardson pas net (R_{λ} , séparation initiale)

Statistiques de N \geq 4 particules

Pourquoi 4 particules ?

Suivre un petit volume le long d'une trajectoire lagrangienne.

 \checkmark La turbulence est intrinsèquement 3D:

advection dans NS: $({f u}.
abla){f u}$; dissipation $2
u \ Tr(S^2)$, prod. d'enstrophie, …

✓ Structure locale → structures cohérentes (filaments de vorticité, ...)

Douady, Couder & Brachet, PRL 1991

✓ <u>Applications</u>:

* nouveau point de vue sur la turb.: transfert d'énergie en THI (*Pumir, Shraiman & Chertkov, EPL 2001*) universalité des petites échelles (*Naso, Chertkov & Pumir, JoT 2006*)

* schémas de LES: van der Bos, Tao, Meneveau & Katz, PoF 2002 (tests a priori) Pumir & Shraiman, JSP 2003 Chevillard, Li, Eyink & Meneveau, 2008

Déformation d'un élément de volume

$$\rho_{1} = (\mathbf{r}_{1} - \mathbf{r}_{2})/\sqrt{2} \rho_{2} = (\mathbf{r}_{1} + \mathbf{r}_{2} - 2\mathbf{r}_{3})/\sqrt{6} \rho_{3} = (\mathbf{r}_{1} + \mathbf{r}_{2} + \mathbf{r}_{3} - 3\mathbf{r}_{4})/\sqrt{12}$$
 $\rightarrow \rho = [\rho_{1}; \rho_{2}; \rho_{3}] \rightarrow$ $g = \rho\rho^{t}$ (moment d'inertie)

Xu, Ouellette & Bodenschatz, NJP 2008:

Tenseur de gradients de vitesse

$$\boldsymbol{m}_{ij} = \begin{pmatrix} \partial_x u_x & \partial_x u_y & \partial_x u_z \\ \partial_y u_x & \partial_y u_y & \partial_y u_z \\ \partial_z u_x & \partial_z u_y & \partial_z u_z \end{pmatrix} \longrightarrow$$

$$\begin{vmatrix} S = \frac{1}{2}(m + m^{t}) \\ \omega_{i} = \varepsilon_{ijk}m_{jk} \\ Tr(m) = \partial_{i}u_{i} = 0 \end{vmatrix}$$

Exp.: * Zeff et al, Nature 2003

* Lüthi, Tsinober & Kinzelbach, JFM 2005 **DNS:** * Yeung & Pope, JFM 1989

* *Pope & Chen, PoF 1990*

* Girimaji & Pope, JFM 1990

→ <u>Géométrie statistique:</u>

 \triangleright alignment de $<\omega>$ et $<\hat{s}_2>$

 $> < s_1 > \le 0 \le < s_2 > \le < s_3 >$

(dérivées et coarse-grained)

Caractérisation de la topologie locale de l'écoulement: le plan (R,Q)

Les vp de m ne dépendent que de 2 paramètres (Cayley-Hamilton):

$$Q = -\frac{1}{2}Tr(m^2)$$
$$R = -\frac{1}{3}Tr(m^3)$$

Physiquement:

$$Q = \frac{1}{4}\omega^2 - \frac{1}{2}Tr(S^2)$$
$$R = -\frac{1}{4}\omega S\omega - \frac{1}{3}Tr(S^3)$$

Dynamique du tenseur de gradients de vitesse: modélisation (1)

$$\nabla(NS) \to \frac{Dm_{ij}}{Dt} = -m_{ik}m_{kj} - \frac{\partial_{ij}p}{\partial_{ij}p} + \nu \partial_{kk}m_{ij}$$

Нур.:
$$\partial_{ij}p = -\frac{1}{3}Tr(m^2)\delta_{ij}$$
 $\nu = 0$

Dynamique d'Euler Restreinte

Vieillefosse (1984), Cantwell (1992)

✓ système soluble analytiquement (R et Q)

✓ singularité en temps fini !

✓ comportements intéressants avant la singularité (alignement ω/\hat{s}_2 , $s_2>0$)

Dynamique du tenseur de gradients de vitesse: modélisation (2)

Martin, Ooi, Chong & Soria, PoF 1998:

$$\frac{\partial_{ij}p}{\partial_{kk}m_{ij}} = -\frac{1}{3}Tr(m^2)\delta_{ij} \rightarrow \text{singu}$$

$$\nu \partial_{kk}m_{ij} = -\frac{1}{\tau}m_{ij}$$

→ singularité en temps fini

Jeong & Girimaji, TCFD 2003:

$$\begin{aligned} & \frac{\partial_{ij}p = -\frac{1}{3}Tr(m^2)\delta_{ij}}{\nu\partial_{kk}m_{ij}} = -\frac{1}{3\tau}\frac{C_{ij}^{-1}}{Tr(C^{-1})} \end{aligned}$$

C = tenseur de Cauchy-Green (déformations matérielles) Dynamique du tenseur de gradients de vitesse: modélisation (3)

Chevillard & Meneveau, PRL 2006:

$$\begin{aligned} \partial_{ij}p &= -\frac{(c_{\tau}^{-1})_{ij}}{Tr(c_{\tau}^{-1})}Tr(m^2) \\ \nu \partial_{kk}m_{ij} &= -\frac{Tr(c_{\tau}^{-1})}{3T}m_{ij} \\ &+ \text{forçage} \end{aligned}$$

 \mathbf{c}_{τ} = tenseur de « Cauchy-Green stationnaire »

Déformations récentes

$$dm = \left(-m^2 + \frac{c_{\tau}^{-1}}{Tr(c_{\tau}^{-1})}Tr(m^2) - \frac{Tr(c_{\tau}^{-1})}{3T}m\right)dt + dW$$

- ✓ Dépendance explicite en Re si $\tau = \tau_K$
- ✓ <u>Résultats:</u>
 - alignement de vorticité, plan (R,Q)
 - intermittence: accord des exposants avec les données standards
 - prédictions moins bonnes à grand Re → couplage avec un modèle de cascade (Biferale, Chevillard, Meneveau & Toschi, PRL 2007)
 - comparaison avec DNS, universalité: *Chevillard & Meneveau, CRAS 2007 Chevillard, Meneveau, Biferale & Toschi, 2008*
 - application à LES (Chevillard, Yi, Eyink & Meneveau, 2008)

Dynamique du tenseur de gradients de vitesse **COARSE-GRAINED**: modèle de la tétrade

- ✓ Modèle phénoménologique, lagrangien
- \checkmark Statistiques du tenseur de gradients de vitesse coarse-grained M (gamme inertielle), en fonction de r
- ✓ On suit la dynamique de 4 particules pour construire M (différences finies):

 \rightarrow « modèle de la tétrade »

Chertkov, Pumir & Shraiman, PoF 1999

Ce modèle décrit les dynamiques de:

* M: tenseur de gradients de vitesse « coarse-grained »

* g: tenseur moment d'inertie (déformation géométrique et variation de taille)

Dérivation et définition du modèle (1)

✓ On a vu:

$$\nabla(NS) \rightarrow \frac{dm_{ij}}{dt} + m_{ij}^2 = -\frac{\partial_{ij}p}{\partial_{ij}p} + \text{viscosite} + \text{forcage}$$

 Pour aller au-delà de la singularité d'Euler Restreint, on introduit la géométrie du volume lagrangien

 \rightarrow <u>Équation pour la géométrie</u>, dérivée de: (M~ $\partial v/\partial x$)

 $\frac{d\rho}{dt} = v = \rho M + \xi$ $\frac{\rho M: \text{ composante cohérente de la vitesse (k ~ 1/R)}}{\xi: \text{ composante fluctuante (k >> 1/R)}}$

Rappel:

$$\rho_{1} = (\mathbf{r}_{1} - \mathbf{r}_{2})/\sqrt{2}$$

$$\rho_{2} = (\mathbf{r}_{1} + \mathbf{r}_{2} - 2\mathbf{r}_{3})/\sqrt{6}$$

$$\rho_{3} = (\mathbf{r}_{1} + \mathbf{r}_{2} + \mathbf{r}_{3} - 3\mathbf{r}_{4})/\sqrt{12}$$

$$\rightarrow \rho = [\rho_{1}; \rho_{2}; \rho_{3}] \rightarrow \boxed{g = \rho\rho^{t}}$$
(moment d'inertie)

Dérivation et définition du modèle (2)

<u>Équation pour le tenseur de gradient de vitesses</u>

(obtenue par une approx. du hessien de pression basée sur des résultats analytiques et numériques)

Réduction de la non-linéarité à travers le hessien de pression: l'importance de cet effet est mesurée par α .

Bilan d'énergie sur le modèle \rightarrow terme de dissipation sous-maille $\propto \alpha$!

Dérivation et définition du modèle (3)

On obtient finalement le système d'EDO stochastiques:

$$\frac{dM}{dt} + (1 - \mathbf{O}(M^2 - \Pi TrM^2)) = \eta$$
$$\frac{d\rho}{dt} = \rho M + \xi$$
$$\Pi = \frac{(\rho \rho^t)^{-1}}{Tr((\rho \rho^t)^{-1})}$$

Bruits blancs gaussiens obéissant à K41:

$$\langle \xi_{ab}(t).\xi_{cd}(0)\rangle = \oint \sqrt{Tr(MM^t)} \rho^2 \,\delta_{ab}\delta_{cd} \,\delta(t)$$
$$\langle \eta_{ab}(t).\eta_{cd}(0)\rangle = \oint (\delta_{ac}\delta_{bd} - \frac{1}{3}\delta_{ab}\delta_{cd}) \,\frac{\varepsilon}{\rho^2} \,\delta(t)$$

Chertkov, Pumir & Shraiman, PoF 1999

Solutions du modèle (THI)

- ✓ <u>Modèle difficile à résoudre</u>: EDO stochastiques dépendant de 17 (ou 14) variables, et conditions initiales pas complètement déterminées ((R,Q,r₀) → ρ mais pas M)
- ✓ <u>1^{ère} méthode: approx. semi-classique</u> (Euler-Lagrange) + approx. du col (simplexe+recuit simulé)

Naso & Pumir, PRE 2005

✓ <u>Résultats principaux:</u>

 \geq lois d'échelles des moments d'ordres 2 et 3 vérifient K41 (et DNS) si $\alpha \sim 0.45$

Solutions du modèle (cisaillement homogène)

➢ Postulat de la théorie de la turbulence: universalité des fluctuations à petite échelle, donc l'isotropie devrait être restorée quand r ↓

Configuration la plus simple: turbulence avec cisaillement homogène

Travaux expérimentaux (Shen & Warhaft, 2000) et numériques (Pumir & Shraiman, 1995; Pumir, 1996) suggèrent que le retour à l'isotropie est beaucoup plus lent que prévu...

 \blacktriangleright <u>Idée:</u> imposer un cisaillement à grande échelle, et calculer P(R,Q) et les quantités dynamiques à différentes échelles, pour différentes intensités du cisaillement.

> Mêmes équations de la dynamique. On ne change que la condition à grande échelle.

Naso, Chertkov & Pumir, JoT 2006

Solutions du modèle (cisaillement homogène)

Les grandeurs dominées par la rotation relaxent plus vite vers leurs valeurs dans le cas isotrope que celles dominées par les défomations (structures plus intenses)

 \rightarrow nouvelle idée pour les aspects physiques de la relaxation vers l'isotropie à petite échelle.

Résultats expérimentaux récents (1): P(R,Q) dans la **gamme inertielle**

van der Bos, Tao, Meneveau & Katz, PoF 2002

Résultats expérimentaux récents (2): P(R,Q) dans la **gamme inertielle**

L=70mm; η=0.03mm

Bodenschatz, Pumir & Xu, proc. ICTAM 2008

Résultats expérimentaux récents (3): mesure de α

✓ dépendance de α en fonction de r/L

✓ dépendance de plus en plus faible quand R_{λ} ↑

✓ peut-être plus de dépendance à R_{λ} suffisamment grand ???

Xu, Pumir & Bodenschatz, 2008

Résumé – conclusion

- ✓ Turb. lagrangienne universelle à plus haut Re que turb. Eulérienne
- ✓ Quantités importantes en turbulence lagrangienne: accélération (1 part.) et gradient de pression (N≥4 part.)
- Accélération = grandeur très intermittente
- Gradient de pression = quantité non locale
- Importance des techniques expérimentales
- ✓ Tenseur gradients de vitesse
 - \rightarrow information sur les processus fondamentaux de la turbulence 3D

Trajectoires dans le plan (R,Q) dans la gamme inertielle: DNS (R_{λ} =130; 256³)

r/L = 1/22 σ^{*} 0 -2 0 2 -1 1 R, (b)

Construites à partir des moyennes conditionnelles:

 $\left\langle \dot{R}|R,Q
ight
angle$ $\left\langle \dot{Q}|R,Q
ight
angle$