Lyon, GDR de Turbulence, 1 avril, 2008

Singularités complexes des équations d'Euler et Navier–Stokes

W. Pauls, T. Matsumoto, U. Frisch, J. van der Hoeven et A. Gilbert

Main motivation

Do 3D incompressible flows governed by the Euler or the Navier–Stokes equation

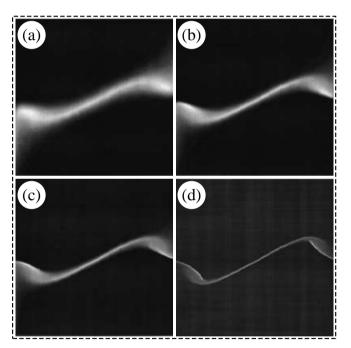
$$\partial_t \boldsymbol{v} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} = -\nabla p + \boldsymbol{\nu} \Delta \boldsymbol{v},$$

 $\nabla \cdot \boldsymbol{v} = 0,$

with *smooth* (e.g. analytic) initial data develop finite-time singularities (blowup)?

Why study singularities?

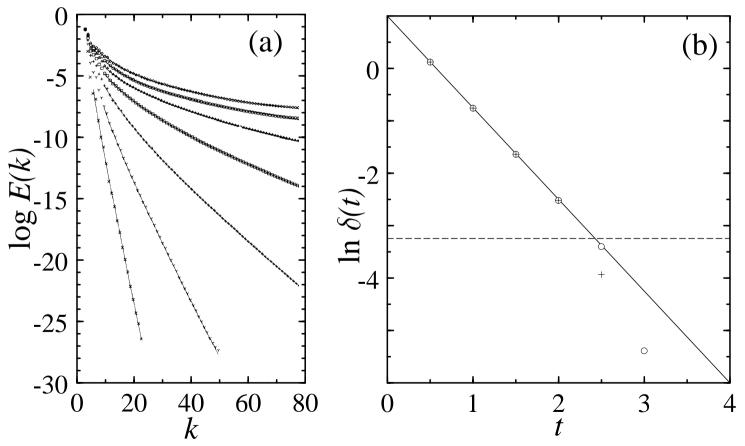
- Dissipative anomaly in turbulence: are singularities responsible for non-vanishing dissipation as *ν* → 0?
- Depletion of nonlinearity for the Euler equation
- Numerics: in general solutions are tamer than predicted analytically



• Strong intermittency in the dissipation range: signature of singularities?

Why **complex** singularities?

- Bardos and Benachour (1977) proved that in 3D, for analytic initial data, any hypothetical real-space singularity at t_{*} is preceded by complex-space (C³) singularities within a distance δ(t) of ℝ³ which vanishes as t → t_{*}.
- Numerical monitoring of complex singularities: exponential fall-off $2\delta(t)$ of energy spectra



Series expansion for the 2D Navier–Stokes equation (Sinai 2005)

• The two-dimensional Navier–Stokes equation

$$\partial_t \nabla^2 \psi - J(\psi, \nabla^2 \psi) = \nu \nabla^2 (\nabla^2 \psi).$$

is written in Fourier space as

$$\hat{\psi}(k,t) = \hat{\psi}(k,0)e^{-\nu|k|^2t} - \frac{1}{|k|^2}e^{-\nu|k|^2t} \int_0^t e^{\nu|k|^2s} \Big(\sum_{l+l'=k} l \wedge l'|l'|^2 \hat{\psi}(l,s)\hat{\psi}(l',s)\Big) \, ds.$$

• Initial conditions with initial modes p and q

$$\psi_0(z_1, z_2) = \hat{F}(\boldsymbol{p})e^{-i\boldsymbol{p}\cdot\boldsymbol{z}} + \hat{F}(\boldsymbol{q})e^{-i\boldsymbol{q}\cdot\boldsymbol{z}} + \text{c.c.}$$

Putting *F̂*(*p*), *F̂*(*q*) → *AF̂*(*p*), *AF̂*(*q*) and taking *A* → 0 we recover solutions starting with initial conditions

$$\psi_0(z_1, z_2) = \hat{F}(\boldsymbol{p})e^{-i\boldsymbol{p}\cdot\boldsymbol{z}} + \hat{F}(\boldsymbol{q})e^{-i\boldsymbol{q}\cdot\boldsymbol{z}}$$

- $\nu \to 0$ yields the corresponding solutions of the Euler equation
- These solutions have the self-similar form

$$\psi(z_1, z_2) = \frac{1}{t} F(\tilde{z}_1, \tilde{z}_2), \qquad (\tilde{z}_1, \tilde{z}_2) = (z_1 + i\,\lambda_1 \ln t, \, z_2 + i\,\lambda_2 \ln t),$$

Short-time asymptotics for the 2D Euler equation

• Complexified 2D Euler equation $(z_1, z_2) = (x_1 + iy_1, x_2 + iy_2)$

$$\partial_t \nabla^2 \psi = J(\psi, \nabla^2 \psi)$$

• Short-time asymptotic régime: initial condition with two basic modes p and q

$$\psi_0(z_1, z_2) = \hat{F}(\boldsymbol{p})e^{-i\boldsymbol{p}\cdot\boldsymbol{z}} + \hat{F}(\boldsymbol{q})e^{-i\boldsymbol{q}\cdot\boldsymbol{z}}$$

• Solution can be written in terms of

$$G_{(\boldsymbol{p},\boldsymbol{q})}(\xi_1,\xi_2) = e^{\xi_1} + e^{\xi_2} + \sum_{k_1=1}^{\infty} \sum_{k_2=1}^{\infty} \hat{G}_{(\boldsymbol{p},\boldsymbol{q})}(k_1,k_2) e^{k_1\xi_1} e^{k_2\xi_2}.$$

- Coefficients $\hat{G}_{(\boldsymbol{p},\boldsymbol{q})}(k_1,k_2)$ satisfy a certain recursion relation.
- In principle, all coefficients can be calculated symbolically, e.g.

$$\hat{G}_{(\boldsymbol{p},\boldsymbol{q})}(1,1) = -\frac{|\boldsymbol{q}|^2 - |\boldsymbol{p}|^2}{|\boldsymbol{p} + \boldsymbol{q}|^2}, \qquad \hat{G}_{(\boldsymbol{p},\boldsymbol{q})}(2,1) = \frac{1}{2} \frac{|\boldsymbol{q}|^2 - |\boldsymbol{p}|^2}{|\boldsymbol{p} + \boldsymbol{q}|^2} \frac{|\boldsymbol{p} + \boldsymbol{q}|^2 - |\boldsymbol{p}|^2}{|2\boldsymbol{p} + \boldsymbol{q}|^2}$$

• Numerics indicate that $(-1)^{k_1} \hat{G}_{(\boldsymbol{p},\boldsymbol{q})}(k_1,k_2) \ge 0$ for all (k_1,k_2) except for (1,0)

Pseudohydrodynamics

• Function $G_{(\boldsymbol{p},\boldsymbol{q})}(\xi_1,\xi_2)$ is solution of

$$\Delta_{(\boldsymbol{p},\boldsymbol{q})}G=J(H_{(\boldsymbol{p},\boldsymbol{q})},\Delta_{(\boldsymbol{p},\boldsymbol{q})}G),$$

where $H_{(p,q)}(\xi_1,\xi_2) = G_{(p,q)} + \xi_1 - \xi_2$ and $\Delta_{(p,q)}$ is a modified Laplacian

$$\Delta_{(\boldsymbol{p},\boldsymbol{q})} = |\boldsymbol{p}|^2 \frac{\partial^2}{\partial \xi_1^2} + 2\boldsymbol{p} \cdot \boldsymbol{q} \frac{\partial}{\partial \xi_1} \frac{\partial}{\partial \xi_2} + |\boldsymbol{q}|^2 \frac{\partial^2}{\partial \xi_2^2}$$

- Relevant parameters:
 - Ratio of moduli $\eta = |{m q}|/|{m p}|$ of the basic vectors ${m p}$ and ${m q}$
 - Angle ϕ between \boldsymbol{p} and \boldsymbol{q}
- Trivial solution for $\eta = 1$

$$G(\xi_1,\xi_2) = e^{\xi_1} + e^{\xi_2}, \qquad H(\xi_1,\xi_2) = e^{\xi_1} + e^{\xi_2} + \xi_1 - \xi_2$$

- Perturbative expansion in $(\eta 1)$ yieds linearised Euler equation with a source term at first subleading order
- For the linearised Euler equation the vorticity diverges near the singularities as s^{-1} , where s is the distance to the singularities

Geometry and nature of sigularities: numerical results

• Asymptotics of $\hat{G}_{(\boldsymbol{p},\boldsymbol{q})}(k_1,k_2)$ in polar coordinates $\boldsymbol{k} = |\boldsymbol{k}|(\cos\theta,\sin\theta)$

$$\hat{G}_{(\boldsymbol{p},\boldsymbol{q})}(|\boldsymbol{k}|,\theta) \simeq C_{(\boldsymbol{p},\boldsymbol{q})}(\theta)|\boldsymbol{k}|^{-\alpha_{(\boldsymbol{p},\boldsymbol{q})}}e^{-\delta_{(\boldsymbol{p},\boldsymbol{q})}(\theta)|\boldsymbol{k}|}, \quad \text{for } |\boldsymbol{k}| \to \infty$$

• Vorticity diverges near the singularities

$$\omega \sim s^{-\beta},$$

where $\alpha + \beta = 7/2$

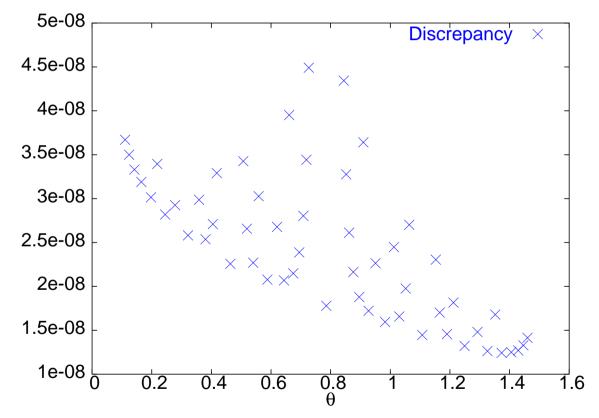
- High-precision numerical calculation: exponent α (and thus β) depends on φ (but not on η)
- Conjecture:

exponent $\alpha(\phi)$ increases monotonically from $\alpha(0) = 5/2$ to $\alpha(\pi) = 3$ (ϕ) decreases from $\beta(0) = 1$ to $\beta(\pi) = 1/2$

Case $\phi = 0$: precise determination of the nature of singularities

• Numerically determined asymptotic expansion obtained using an asymptotic interpolation procedure

$$\hat{G}(|\boldsymbol{k}|,\theta) \simeq C(\theta)|\boldsymbol{k}|^{-\frac{5}{2}}e^{-\delta(\theta)|\boldsymbol{k}|} \left[1 + \frac{b_1(\theta)}{|\boldsymbol{k}|} + \frac{a_2(\theta)\ln|\boldsymbol{k}|}{|\boldsymbol{k}|^2} + O\left(\frac{1}{|\boldsymbol{k}|^2}\right)\right]$$



• Theory in progress

Case $\phi = \pi$ **: work in progress**

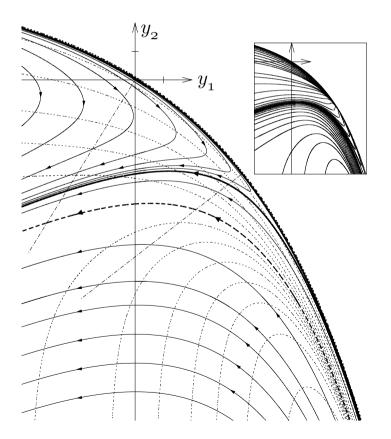
- Resonances: vanishing denominator in the coefficients $\hat{G}_{(\boldsymbol{p},\boldsymbol{q})}(k_1,k_2)$
 - Fix angle $\phi = \pi$ first: poles at values $\eta = 1, 2, 3, ..., e.g.$

$$\hat{G}(2,1) = \frac{1}{2} \frac{\eta + 1}{\eta - 1} \frac{\eta}{\eta - 2}$$

- Fix $\eta = 1, 2, 3, ...$ first and then take the limit $\phi \to \pi$: all coefficiets have finite values
- Coefficients $\hat{G}(k_1, k_2)$ are not continuous for $\phi = \pi$ and $\eta = 1, 2, 3, ...$
- Numerical study of the limit $\phi \to \pi$
- Conjectured value of the exponent $\alpha = 3$

Depletion of non-linearity for the 2D Euler equation

- Nature of singularities
 - Case $\phi = 0$: well rendered by the lie arised Euler equation
 - Case $\phi = \pi$: the same as for the 2D Burgers equation
- The degree of non-linearity is determined by the parameter ϕ
- Geometry of the flow



Short-time asymptotics for 3D Euler equation

- Initial conditions:
 - Kida–Pelz flow

$$v_1(z_1, z_2, z_3) = \sin z_1(\cos 3z_2 \cos z_3 - \cos z_2 \cos 3z_3)$$

$$v_2(z_1, z_2, z_3) = \sin z_2(\cos 3z_3 \cos z_1 - \cos z_3 \cos 3z_1)$$

$$v_3(z_1, z_2, z_3) = \sin z_3(\cos 3z_1 \cos z_2 - \cos z_1 \cos 3z_2)$$

- Permutation (Pelz–Ohkitani) flow

$$v_1(z_1, z_2, z_3) = \sin z_2 + \sin z_3$$

$$v_2(z_1, z_2, z_3) = \sin z_1 + \sin z_3$$

$$v_3(z_1, z_2, z_3) = \sin z_1 + \sin z_2$$

• Numerics indicate that in 3D singularities are non-universal as well

Conclusions and future work

- Nature of complex singularities for inviscid flows in 2D and 3D depends on the initial conditions and is thus non-universal
- Theory in progress in 2D
- Relaxed multiplication algorithms are being implemented using "Mathemagix" for more efficient calculation of solutions
- Detailed analysis of the 3D solutions is envisaged
- Extension to the viscous case: nature and geometry of the singularities of solutions of the Navier–Stokes equation