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Singularités complexes des équations d’Euler et Navier–Stokes

W. Pauls, T. Matsumoto, U. Frisch, J. van der Hoeven et A. Gilbert

Main motivation

Do 3D incompressible flows governed by the Euler or the Navier–Stokes equation

∂t v + (v · ∇)v = −∇p+ ν∆v,

∇ · v = 0,

with smooth (e.g. analytic) initial data develop finite-time singularities (blowup)?
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Why study singularities?

• Dissipative anomaly in turbulence: are singularities responsible for non-vanishing
dissipation as ν → 0?

• Depletion of nonlinearity for the Euler equation

• Numerics: in general solutions are tamer than predicted analytically

(a) (b)

(c) (d)

• Strong intermittency in the dissipation range: signature of singularities?
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Why complex singularities?

• Bardos and Benachour (1977) proved that in 3D, for analytic initial data, any
hypothetical real-space singularity at t? is preceded by complex-space (C3)
singularities within a distance δ(t) of R3 which vanishes as t→ t?.

• Numerical monitoring of complex singularities: exponential fall-off 2δ(t) of energy
spectra
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Series expansion for the 2D Navier–Stokes equation (Sinai 2005)
• The two-dimensional Navier–Stokes equation

∂t∇2ψ − J(ψ,∇2ψ) = ν∇2
( ∇2ψ

)
.

is written in Fourier space as

ψ̂(k, t) = ψ̂(k, 0)e−ν|k|2t− 1
|k|2 e

−ν|k|2t

∫ t

0

eν|k|2s
( ∑

l+l′=k

l∧l′|l′|2ψ̂(l, s)ψ̂(l′, s)
)
ds.

• Initial conditions with initial modes p and q

ψ0(z1, z2) = F̂ (p)e−ip·z + F̂ (q)e−iq·z + c.c.

• Putting F̂ (p), F̂ (q) → AF̂ (p), AF̂ (q) and taking A→ 0 we recover solutions
starting with initial conditions

ψ0(z1, z2) = F̂ (p)e−ip·z + F̂ (q)e−iq·z

• ν → 0 yields the corresponding solutions of the Euler equation

• These solutions have the self-similar form

ψ(z1, z2) =
1
t
F (z̃1, z̃2), (z̃1, z̃2) = (z1 + i λ1 ln t, z2 + i λ2 ln t),
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Short-time asymptotics for the 2D Euler equation

• Complexified 2D Euler equation (z1, z2) = (x1 + iy1, x2 + iy2)

∂t∇2ψ = J(ψ,∇2ψ)

• Short-time asymptotic régime: initial condition with two basic modes p and q

ψ0(z1, z2) = F̂ (p)e−ip·z + F̂ (q)e−iq·z

• Solution can be written in terms of

G(p,q)(ξ1, ξ2) = eξ1 + eξ2 +
∞∑

k1=1

∞∑

k2=1

Ĝ(p,q)(k1, k2)ek1ξ1ek2ξ2 .

• Coefficients Ĝ(p,q)(k1, k2) satisfy a certain recursion relation.

• In principle, all coefficients can be calculated symbolically, e.g.

Ĝ(p,q)(1, 1) = −|q|
2 − |p|2
|p + q|2 , Ĝ(p,q)(2, 1) =

1
2
|q|2 − |p|2
|p + q|2

|p + q|2 − |p|2
|2p + q|2

• Numerics indicate that (−1)k1Ĝ(p,q)(k1, k2) ≥ 0 for all (k1, k2) except for (1, 0)
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Pseudohydrodynamics
• Function G(p,q)(ξ1, ξ2) is solution of

∆(p,q)G = J(H(p,q),∆(p,q)G),

where H(p,q)(ξ1, ξ2) = G(p,q) + ξ1 − ξ2 and ∆(p,q) is a modified Laplacian

∆(p,q) = |p|2 ∂
2

∂ξ21
+ 2p · q ∂

∂ξ1

∂

∂ξ2
+ |q|2 ∂

2

∂ξ22

• Relevant parameters:

– Ratio of moduli η = |q|/|p| of the basic vectors p and q

– Angle φ between p and q

• Trivial solution for η = 1

G(ξ1, ξ2) = eξ1 + eξ2 , H(ξ1, ξ2) = eξ1 + eξ2 + ξ1 − ξ2

• Perturbative expansion in (η − 1) yieds linearised Euler equation with a source term
at first subleading order

• For the linearised Euler equation the vorticity diverges near the singularities as s−1,
where s is the distance to the singularities
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Geometry and nature of sigularities: numerical results

• Asymptotics of Ĝ(p,q)(k1, k2) in polar coordinates k = |k|(cos θ, sin θ)

Ĝ(p,q)(|k|, θ) ' C(p,q)(θ)|k|−α(p,q)e−δ(p,q)(θ)|k|, for |k| → ∞

• Vorticity diverges near the singularities

ω ∼ s−β ,

where α+ β = 7/2

• High-precision numerical calculation: exponent α (and thus β) depends on φ (but not
on η)

• Conjecture:
exponent α(φ) increases monotonically from α(0) = 5/2 to α(π) = 3

m
β(φ) decreases from β(0) = 1 to β(π) = 1/2
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Case φ = 0: precise determiation of the nature of singularities

• Numerically determined asymptotic expansion obtained using an asymptotic
interpolation procedure

Ĝ(|k|, θ) ' C(θ)|k|− 5
2 e−δ(θ)|k|

[
1 +

b1(θ)
|k| +

a2(θ) ln |k|
|k|2 +O

(
1
|k|2

)]
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Discrepancy

• Theory in progress
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Case φ = π: work in progress

• Resonances: vanishing denominator in the coefficients Ĝ(p,q)(k1, k2)

– Fix angle φ = π first: poles at values η = 1, 2, 3, ..., e.g.

Ĝ(2, 1) =
1
2
η + 1
η − 1

η

η − 2

– Fix η = 1, 2, 3, ... first and then take the limit φ→ π: all coefficiets have finite
values

• Coefficients Ĝ(k1, k2) are not continuous for φ = π and η = 1, 2, 3, ...

• Numerical study of the limit φ→ π

• Conjectured value of the exponent α = 3
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Depletion of non-linearity for the 2D Euler equation

• Nature of singularities

– Case φ = 0: well rendered by the liearised Euler equation

– Case φ = π: the same as for the 2D Burgers equation

• The degree of non-linearity is determined by the parameter φ

• Geometry of the flow

y


y

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Short-time asymptotics for 3D Euler equation

• Initial conditions:

– Kida–Pelz flow

v1(z1, z2, z3) = sin z1(cos 3z2 cos z3 − cos z2 cos 3z3)

v2(z1, z2, z3) = sin z2(cos 3z3 cos z1 − cos z3 cos 3z1)

v3(z1, z2, z3) = sin z3(cos 3z1 cos z2 − cos z1 cos 3z2)

– Permutation (Pelz–Ohkitani) flow

v1(z1, z2, z3) = sin z2 + sin z3

v2(z1, z2, z3) = sin z1 + sin z3

v3(z1, z2, z3) = sin z1 + sin z2

• Numerics indicate that in 3D singularities are non-universal as well
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Conclusions and future work

• Nature of complex singularities for inviscid flows in 2D and 3D depends on the
initial conditions and is thus non-universal

• Theory in progress in 2D

• Relaxed multiplication algorithms are being implemented using “Mathemagix” for
more efficient calculation of solutions

• Detailed analysis of the 3D solutions is envisaged

• Extension to the viscous case: nature and geometry of the singularities of solutions
of the Navier–Stokes equation
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