Singularités complexes des équations d'Euler et Navier-Stokes

W. Pauls, T. Matsumoto, U. Frisch, J. van der Hoeven et A. Gilbert

Main motivation

Do 3D incompressible flows governed by the Euler or the Navier-Stokes equation

$$
\begin{aligned}
\partial_{t} \boldsymbol{v}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{v} & =-\nabla p+\nu \Delta v \\
\nabla \cdot \boldsymbol{v} & =0
\end{aligned}
$$

with smooth (e.g. analytic) initial data develop finite-time singularities (blowup)?

Why study singularities?

- Dissipative anomaly in turbulence: are singularities responsible for non-vanishing dissipation as $\nu \rightarrow 0$?
- Depletion of nonlinearity for the Euler equation
- Numerics: in general solutions are tamer than predicted analytically

- Strong intermittency in the dissipation range: signature of singularities?

Why complex singularities?

- Bardos and Benachour (1977) proved that in 3D, for analytic initial data, any hypothetical real-space singularity at t_{\star} is preceded by complex-space $\left(\mathbb{C}^{3}\right)$ singularities within a distance $\delta(t)$ of \mathbb{R}^{3} which vanishes as $t \rightarrow t_{\star}$.
- Numerical monitoring of complex singularities: exponential fall-off $2 \delta(t)$ of energy spectra

Series expansion for the 2D Navier-Stokes equation (Sinai 2005)

- The two-dimensional Navier-Stokes equation

$$
\partial_{t} \nabla^{2} \psi-J\left(\psi, \nabla^{2} \psi\right)=\nu \nabla^{2}\left(\nabla^{2} \psi\right)
$$

is written in Fourier space as

$$
\hat{\psi}(k, t)=\hat{\psi}(k, 0) e^{-\nu|k|^{2} t}-\frac{1}{|k|^{2}} e^{-\nu|k|^{2} t} \int_{0}^{t} e^{\nu|k|^{2} s}\left(\sum_{l+l^{\prime}=k} l \wedge l^{\prime}\left|l^{\prime}\right|^{2} \hat{\psi}(l, s) \hat{\psi}\left(l^{\prime}, s\right)\right) d s
$$

- Initial conditions with initial modes \boldsymbol{p} and \boldsymbol{q}

$$
\psi_{0}\left(z_{1}, z_{2}\right)=\hat{F}(\boldsymbol{p}) e^{-i \boldsymbol{p} \cdot \boldsymbol{z}}+\hat{F}(\boldsymbol{q}) e^{-i \boldsymbol{q} \cdot \boldsymbol{z}}+\text { c.c. }
$$

- Putting $\hat{F}(\boldsymbol{p}), \hat{F}(\boldsymbol{q}) \rightarrow A \hat{F}(\boldsymbol{p}), A \hat{F}(\boldsymbol{q})$ and taking $A \rightarrow 0$ we recover solutions starting with initial conditions

$$
\psi_{0}\left(z_{1}, z_{2}\right)=\hat{F}(\boldsymbol{p}) e^{-i \boldsymbol{p} \cdot \boldsymbol{z}}+\hat{F}(\boldsymbol{q}) e^{-i \boldsymbol{q} \cdot \boldsymbol{z}}
$$

- $\nu \rightarrow 0$ yields the corresponding solutions of the Euler equation
- These solutions have the self-similar form

$$
\psi\left(z_{1}, z_{2}\right)=\frac{1}{t} F\left(\tilde{z}_{1}, \tilde{z}_{2}\right), \quad\left(\tilde{z}_{1}, \tilde{z}_{2}\right)=\left(z_{1}+i \lambda_{1} \ln t, z_{2}+i \lambda_{2} \ln t\right)
$$

Short-time asymptotics for the 2D Euler equation

- Complexified 2D Euler equation $\left(z_{1}, z_{2}\right)=\left(x_{1}+i y_{1}, x_{2}+i y_{2}\right)$

$$
\partial_{t} \nabla^{2} \psi=J\left(\psi, \nabla^{2} \psi\right)
$$

- Short-time asymptotic régime: initial condition with two basic modes \boldsymbol{p} and \boldsymbol{q}

$$
\psi_{0}\left(z_{1}, z_{2}\right)=\hat{F}(\boldsymbol{p}) e^{-i \boldsymbol{p} \cdot \boldsymbol{z}}+\hat{F}(\boldsymbol{q}) e^{-i \boldsymbol{q} \cdot \boldsymbol{z}}
$$

- Solution can be written in terms of

$$
G_{(\boldsymbol{p}, \boldsymbol{q})}\left(\xi_{1}, \xi_{2}\right)=e^{\xi_{1}}+e^{\xi_{2}}+\sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \hat{G}_{(\boldsymbol{p}, \boldsymbol{q})}\left(k_{1}, k_{2}\right) e^{k_{1} \xi_{1}} e^{k_{2} \xi_{2}}
$$

- Coefficients $\hat{G}_{(\boldsymbol{p}, \boldsymbol{q})}\left(k_{1}, k_{2}\right)$ satisfy a certain recursion relation.
- In principle, all coefficients can be calculated symbolically, e.g.

$$
\hat{G}_{(\boldsymbol{p}, \boldsymbol{q})}(1,1)=-\frac{|\boldsymbol{q}|^{2}-|\boldsymbol{p}|^{2}}{|\boldsymbol{p}+\boldsymbol{q}|^{2}}, \quad \hat{G}_{(\boldsymbol{p}, \boldsymbol{q})}(2,1)=\frac{1}{2} \frac{|\boldsymbol{q}|^{2}-|\boldsymbol{p}|^{2}}{|\boldsymbol{p}+\boldsymbol{q}|^{2}} \frac{|\boldsymbol{p}+\boldsymbol{q}|^{2}-|\boldsymbol{p}|^{2}}{|2 \boldsymbol{p}+\boldsymbol{q}|^{2}}
$$

- Numerics indicate that $(-1)^{k_{1}} \hat{G}_{(\boldsymbol{p}, \boldsymbol{q})}\left(k_{1}, k_{2}\right) \geq 0$ for all $\left(k_{1}, k_{2}\right)$ except for $(1,0)$

Pseudohydrodynamics

- Function $G_{(\boldsymbol{p}, \boldsymbol{q})}\left(\xi_{1}, \xi_{2}\right)$ is solution of

$$
\Delta_{(\boldsymbol{p}, \boldsymbol{q})} G=J\left(H_{(\boldsymbol{p}, \boldsymbol{q})}, \Delta_{(\boldsymbol{p}, \boldsymbol{q})} G\right)
$$

where $H_{(\boldsymbol{p}, \boldsymbol{q})}\left(\xi_{1}, \xi_{2}\right)=G_{(\boldsymbol{p}, \boldsymbol{q})}+\xi_{1}-\xi_{2}$ and $\Delta_{(\boldsymbol{p}, \boldsymbol{q})}$ is a modified Laplacian

$$
\Delta_{(\boldsymbol{p}, \boldsymbol{q})}=|\boldsymbol{p}|^{2} \frac{\partial^{2}}{\partial \xi_{1}^{2}}+2 \boldsymbol{p} \cdot \boldsymbol{q} \frac{\partial}{\partial \xi_{1}} \frac{\partial}{\partial \xi_{2}}+|\boldsymbol{q}|^{2} \frac{\partial^{2}}{\partial \xi_{2}^{2}}
$$

- Relevant parameters:
- Ratio of moduli $\eta=|\boldsymbol{q}| /|\boldsymbol{p}|$ of the basic vectors \boldsymbol{p} and \boldsymbol{q}
- Angle ϕ between \boldsymbol{p} and \boldsymbol{q}
- Trivial solution for $\eta=1$

$$
G\left(\xi_{1}, \xi_{2}\right)=e^{\xi_{1}}+e^{\xi_{2}}, \quad H\left(\xi_{1}, \xi_{2}\right)=e^{\xi_{1}}+e^{\xi_{2}}+\xi_{1}-\xi_{2}
$$

- Perturbative expansion in $(\eta-1)$ yieds linearised Euler equation with a source term at first subleading order
- For the linearised Euler equation the vorticity diverges near the singularities as s^{-1}, where s is the distance to the singularities

Geometry and nature of sigularities: numerical results

- Asymptotics of $\hat{G}_{(\boldsymbol{p}, \boldsymbol{q})}\left(k_{1}, k_{2}\right)$ in polar coordinates $\boldsymbol{k}=|\boldsymbol{k}|(\cos \theta, \sin \theta)$

$$
\hat{G}_{(\boldsymbol{p}, \boldsymbol{q})}(|\boldsymbol{k}|, \theta) \simeq C_{(\boldsymbol{p}, \boldsymbol{q})}(\theta)|\boldsymbol{k}|^{-\alpha_{(\boldsymbol{p}, \boldsymbol{q})}} e^{-\delta_{(\boldsymbol{p}, \boldsymbol{q})}(\theta)|\boldsymbol{k}|}, \quad \text { for }|\boldsymbol{k}| \rightarrow \infty
$$

- Vorticity diverges near the singularities

$$
\omega \sim s^{-\beta}
$$

where $\alpha+\beta=7 / 2$

- High-precision numerical calculation: exponent α (and thus β) depends on ϕ (but not on η)
- Conjecture:
exponent $\alpha(\phi)$ increases monotonically from $\alpha(0)=5 / 2$ to $\alpha(\pi)=3$

$$
\beta(\phi) \text { decreases from } \beta(0)=1 \text { to } \beta(\pi)=1 / 2
$$

Case $\phi=0$: precise determiation of the nature of singularities

- Numerically determined asymptotic expansion obtained using an asymptotic interpolation procedure

$$
\hat{G}(|\boldsymbol{k}|, \theta) \simeq C(\theta)|\boldsymbol{k}|^{-\frac{5}{2}} e^{-\delta(\theta)|\boldsymbol{k}|}\left[1+\frac{b_{1}(\theta)}{|\boldsymbol{k}|}+\frac{a_{2}(\theta) \ln |\boldsymbol{k}|}{|\boldsymbol{k}|^{2}}+O\left(\frac{1}{|\boldsymbol{k}|^{2}}\right)\right]
$$

- Theory in progress

Case $\phi=\pi$: work in progress

- Resonances: vanishing denominator in the coefficients $\hat{G}_{(\boldsymbol{p}, \boldsymbol{q})}\left(k_{1}, k_{2}\right)$
- Fix angle $\phi=\pi$ first: poles at values $\eta=1,2,3, \ldots$, e.g.

$$
\hat{G}(2,1)=\frac{1}{2} \frac{\eta+1}{\eta-1} \frac{\eta}{\eta-2}
$$

- Fix $\eta=1,2,3, \ldots$ first and then take the limit $\phi \rightarrow \pi$: all coefficiets have finite values
- Coefficients $\hat{G}\left(k_{1}, k_{2}\right)$ are not continuous for $\phi=\pi$ and $\eta=1,2,3, \ldots$
- Numerical study of the limit $\phi \rightarrow \pi$
- Conjectured value of the exponent $\alpha=3$

Depletion of non-linearity for the 2D Euler equation

- Nature of singularities
- Case $\phi=0$: well rendered by the liearised Euler equation
- Case $\phi=\pi$: the same as for the 2D Burgers equation
- The degree of non-linearity is determined by the parameter ϕ
- Geometry of the flow

Short-time asymptotics for 3D Euler equation

- Initial conditions:
- Kida-Pelz flow

$$
\begin{aligned}
& v_{1}\left(z_{1}, z_{2}, z_{3}\right)=\sin z_{1}\left(\cos 3 z_{2} \cos z_{3}-\cos z_{2} \cos 3 z_{3}\right) \\
& v_{2}\left(z_{1}, z_{2}, z_{3}\right)=\sin z_{2}\left(\cos 3 z_{3} \cos z_{1}-\cos z_{3} \cos 3 z_{1}\right) \\
& v_{3}\left(z_{1}, z_{2}, z_{3}\right)=\sin z_{3}\left(\cos 3 z_{1} \cos z_{2}-\cos z_{1} \cos 3 z_{2}\right)
\end{aligned}
$$

- Permutation (Pelz-Ohkitani) flow

$$
\begin{aligned}
& v_{1}\left(z_{1}, z_{2}, z_{3}\right)=\sin z_{2}+\sin z_{3} \\
& v_{2}\left(z_{1}, z_{2}, z_{3}\right)=\sin z_{1}+\sin z_{3} \\
& v_{3}\left(z_{1}, z_{2}, z_{3}\right)=\sin z_{1}+\sin z_{2}
\end{aligned}
$$

- Numerics indicate that in 3D singularities are non-universal as well

Conclusions and future work

- Nature of complex singularities for inviscid flows in 2D and 3D depends on the initial conditions and is thus non-universal
- Theory in progress in 2D
- Relaxed multiplication algorithms are being implemented using "Mathemagix" for more efficient calculation of solutions
- Detailed analysis of the 3D solutions is envisaged
- Extension to the viscous case: nature and geometry of the singularities of solutions of the Navier-Stokes equation

