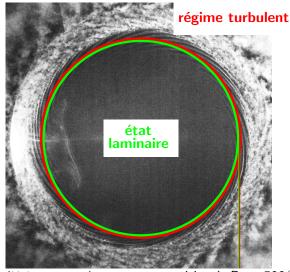
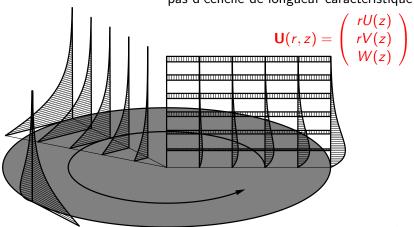
Quelques mesures expérimentales autour de la transition dans la couche limite produite par un disque en rotation


Benoît PIER

Laboratoire de mécanique des fluides et d'acoustique CNRS — Université de Lyon École centrale de Lyon, France

1er avril 2008

(Kohama 1984)


transition à $R_c \simeq 500\delta$

- Transition brusque laminaire-turbulent
- Dynamique exacte de la région de transition ?
- Instabilités primaire et secondaire
- Instabilités convective et absolue
- Fréquences intrinsèques ?
- Type de turbulence ?

Benoît PIER (LMFA) 1er avril 2008 2 / 14

Écoulement de base autosimilaire

pas d'échelle de longueur caractéristique

épaisseur constante de la couche limite $\delta = \sqrt{\frac{\nu}{\Omega}}$

◆ロト ◆団ト ◆豆ト ◆豆 ◆ のへの

3 / 14

Résultats théoriques

- • R < R^{sc} ≈ 284 stabilité:
 atténuation de toutes les perturbations
- R^{sc} < R < R^{ca} instabilité convective : amplification spatiale des perturbations extérieures (imperfections du disque, fluctuations extérieures, vibrations...)
- R > R^{ca} ~ 507 instabilité absolue : croissance des perturbations à r fixé
 - → fluctuations d'amplitude finie auto-entretenues
 - \sim train d'ondes non linéaires à $\beta=68$ et $\omega\simeq 50.5\Omega$
 - → instabilités secondaires → transition

Avantages et inconvénients de cette configuration

- Grande séparation des échelles : $R_{transition} \simeq 500 \delta$ \sim analyse en échelles multiples tout à fait légitime

Avantages et inconvénients de cette configuration

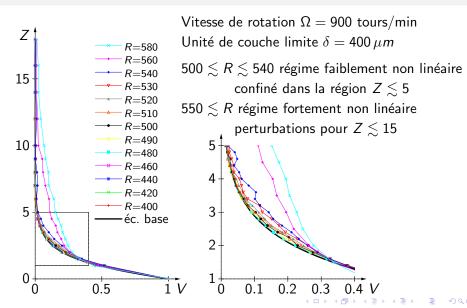

- Grande séparation des échelles : $R_{transition} \simeq 500 \delta$ \sim analyse en échelles multiples tout à fait légitime

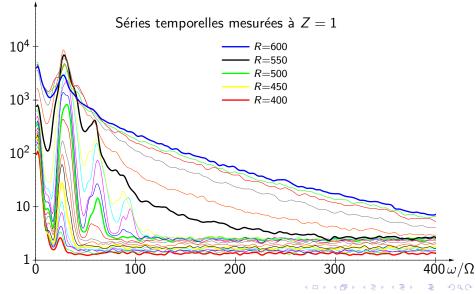
- Amplification exponentielle des perturbations extérieures sur une grande région en amont de la transition
 →comportement intrinsèque "masqué" par le bruit extrinsèque ?
- Mesures très près d'une paroi en mouvement

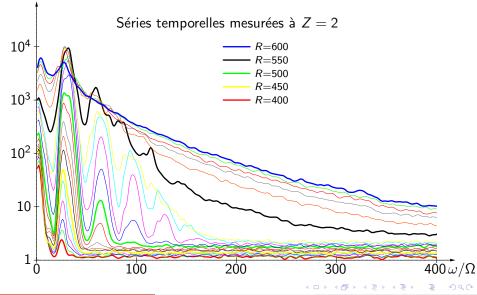
Benoît PIER (LMFA)

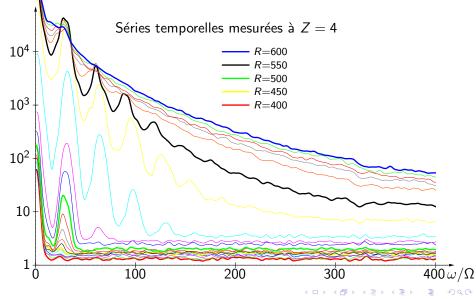
Dispositif expérimental

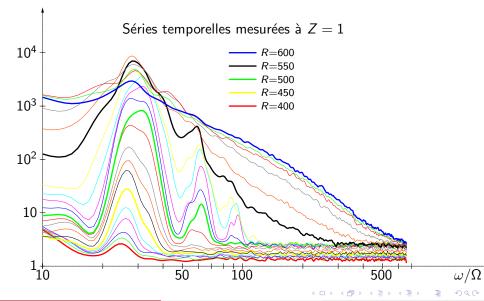
- Disque en verre de 50 cm de diamètre (planéité $< 10 \,\mu m$)
- Rotation jusqu'à 1400 tours/min $(\delta \gtrsim 350 \, \mu m)$


Dispositif expérimental


- Mesures de vitesse locale par fil chaud
- Positionnement par système de déplacement deux axes (précision radiale $50 \, \mu m$, précision verticale $2 \, \mu m$)






Mesures de vitesse azimutale — profils moyens

Conclusions (très) provisoires et questions

- $R \lesssim 480$: Écoulement de base très peu perturbé
- 480 $\lesssim R \lesssim$ 540 : Fluctuations faiblement non linéaires spectres harmoniques (fréquence dominante $\simeq 30\Omega$) perturbations confinées dans la région $Z \lesssim 5$
- $540 \lesssim R$: Régime turbulent, fort épaississement de la couche limite

Conclusions (très) provisoires et questions

- $R \lesssim 480$: Écoulement de base très peu perturbé
- 480 $\lesssim R \lesssim$ 540 : Fluctuations faiblement non linéaires spectres harmoniques (fréquence dominante $\simeq 30\Omega$) perturbations confinées dans la région $Z \lesssim 5$
- $540 \le R$: Régime turbulent, fort épaississement de la couche limite

- Influence des défauts du disque ?
- Quel environnement faut-il pour voir la fréquence intrinsèque à 50Ω ?
- Réponse à un forçage extérieur et contrôle ?
- Modification de la dynamique par la présence d'une rugosité microstructurée (projet "Microsillon")?

4D > 4A > 4E > 4E > E 990

13 / 14

Frédéric Plaza

1965-2008

14 / 14