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A CANTILEVERED PLATE IN AN AXIAL POTENTIAL FLOW BOUNDED BY
TWO RIGID WALLS

U

At a critical velocity, plane state of the plate become unstable, flutter appears
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2D PROBLEM (∞ SPANWISE, FINITE CHORDWISE)
◮ Kornecki (1976), Huang (1995), Watanabe et al. (2002),

Guo and Paı̈doussis (2000), Michelin et al. (2008,2009) :
Theoretical/numerical critical velocity as function of the
mass ratio.

◮ Experimentally, the critical velocity is always higher than
that predicted by models.

U

3D FLOW AROUND A RECTANGULAR PLATE

◮ New parameter : Aspect ratio of the plate h = H/L.

◮ Eloy et al. (2007) : Good correspondence between
experiments and theory is found, showing the great
importance of three-dimensionality of the flow.

H

L
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HOW TO APPROACH THE2 DIMENSIONAL LIMIT ?

INCREASE THE ASPECT RATIO(SHORT FLAGS)
◮ When h ≫ 1, the critical velocity predicted by 3D models is

that predicted by 2D models
◮ Experimentally, 3D deformation of the plate is observed for

such high aspect ratios

H

L

FORCE THE FLOW TO BE2D BY ADDING WALLS

◮ Few experimental data available, Aurégan and Dépollier
(1995), Huang (1995). Even for confined flags, discrepancy
is found.

◮ No theoretical models.

OBJECTIVES

◮ Quantify the phenomenon of confinement with a theoretical model
◮ Validate the model with experiments
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MODEL
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BEAM EQUATION WITH PRESSURE FORCES

M
∂2W

∂T 2
+D

∂4W

∂X4
= 〈[P ]〉 (1)

◮ M ≡ surface density of the plate, D ≡ flexural rigidity
◮ 〈[P ]〉 mean value along the span H of the pressure jump across the plate
◮ Boundary conditions : Beam clamped at X = 0, free at X = L

Doaré, Eloy, Sauzade, Mano

The effect of spanwise confinement on the flutter instability of an elastic plate



Introduction Model Resolution Experiments Conclusions

FINITE LENGTH FLAGS NON-DIMENSIONAL PARAMETERS (2D
PROBLEM)

U∗ =

√

M

D
LU, M∗ =

ρL

M
. (2)

GEOMETRICAL PARAMETERS OF THE3D PROBLEM

◮ Aspect ratio :
h = H/L (3)

◮ Gap :
c = C/L (4)
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HIGH REYNOLDS NUMBER POTENTIAL FLOW

LAPLACE EQUATION FOR THE
PRESSURE

∆p = 0 (5)

[py]|y|=h/2+c = 0

[pz]z=0 = −(∂t + ∂x)
2w

for (x, y) ∈ flag

SOLUTION FOR THE PRESSURE IN INTEGRAL FORM

1

2π
−

∫ 1

0
〈[∂xp]〉(ξ)G(x− ξ, h, c) dξ = (∂t + ∂x)

2w, (6)

where

G(x, h, c) =

∫ ∞

0

sin(kx)

g(k, h, c)
dk. (7)
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2D HELMOLTZ PROBLEM TO FINDg

◮ Helmholtz problem :

∆ϕ = κ2ϕ, (8)

[ϕy ]|y|=1+d = 0, (9)

[ϕz ]z=0 = 1, for |y| < 1, (10)

◮ Function g :

g(κ, d) = −
κ

2
〈[ϕ]〉 = −κ〈ϕ+〉. (11)

◮ Rescaling : κ = kh/2, d = 2c/h

−1 1

z

d

y
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RESOLUTION
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NUMERICAL METHOD (GOOD FORκ < 1)

◮ Finite size problem
 Dimension along the z
axis e

◮ In practice e = 30 has
been used

◮ Using symmetry w/r to the
z-axis and skew-symmetry
w/r to the y-axis

◮ Finite element software
used (COMSOL)

e

d1

z

y
∆ϕ = κϕ

ϕz = 1 ϕ = 0

ϕz = 0

ϕy = 0ϕy = 0
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SEMI-ANALYTICAL METHOD (GOOD FORκ > 1)

M IRROR SYMMETRY

z

2d

y

v

◮ Green’s representation theorem solution for the potential ϕ in integral form
◮ Numerical resolution by expanding the solution over Chebychev polynomials of

the second kind and projecting the equation on Chebychev polynomial of the first
kind linear system
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BEHAVIOR OF g

Numerical method 1/2-analytical method
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BEHAVIOR OF g

Numerical results Analytical results
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k = 100
k = 30
k = 10
k = 3
k = 1
CD(κ d)−2D

(1+C/(κ d)2)D

C = 0.18
D = −0.075

1− g

2κ

κd

◮ gSB(κ, d) ≃ κπ
4

[

1 + 0.805 ln
(

d+0.189
d

)]

, for κ ≪ 1

◮ gLS(κ, d) ≃ 1− 1
2κ

(

1 + 0.18
(κd)2

)−0.075
, for κ ≫ 1.
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SLENDER BODY MODEL (κ ≪ 1)

gSB(κ, d) ≃
κπ

4

[

1 + 0.805 ln

(

d+ 0.189

d

)]

(12)

LARGE-SPAN MODEL (κ ≫ 1)

gLS(κ, d) ≃ 1−
1

2κ

(

1 +
0.18

(κd)2

)−0.075

(13)

COMPOSITE EXTENSION EMPIRICAL MODEL FOR g

ge(κ, d) = 1−

[

1

1− gLS
+ exp

(

gSB −
1

1− gLS

)]−1

, (14)
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VALIDITY OF THE EMPIRICAL MODEL
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STABILITY ANALYSIS

METHODOLOGY [ SAME AS IN ELOY ET AL . (2007,2008) ]
◮ Inverse transform of g  G.

◮ Decomposition of the plate deformation on Galerkin modes (beam modes)

◮ Hypothesis of harmonic time dependence of the deformation at a complex
frequency ω

◮ Pressure distribution associated with a given Galerkin mode sought in the form of
a combination of Chebychev polynomials of the first kind.

◮ Integral equation for the pressure projected on Chebychev polynomials of the
second kind solution for the pressure corresponding to each Galerkin mode.

◮ Projection of the beam equation forced by pressure in the flow on Galerkin modes
 linear eigenvalue problem.

◮ One eigenfrequency with a negative imaginary part instability.
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STABILITY ANALYSIS RESULTS
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EXPERIMENTS
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EXPERIMENTS

Mylar flag Steel plates Mast

Laser displacement measurement point

U

Hot wire
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EXPERIMENT 1 : FIXED CHANNEL, FIXED LENGTH PLATE, VARYING
HEIGHT
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EXPERIMENT 2 : FIXED SIZE PLATE, VARYING CHANNEL HEIGHT
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CONCLUSIONS

◮ 3D model for the pressure distribution in a flow bounded by two walls in the
spanwise direction

◮ Stability analysis using this model
◮ Model validated by experiments
◮ Main result : the 2D limit is very difficult (impossible?) to achieve experimentally

by bounding the flow in the spanwise direction

IMPROVEMENTS

◮ Small gaps, confined flow viscosity effects ?
◮ Effect of the confinement in the z-direction ?
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NUMERICAL RESULTS
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y

−κϕ+

z

κ = 5, d = 0.3 κ = 1, d = 0.3 κ = 1, d = 10−4κ = 0.1, d = 0.3

− − −, Slender-body model −κφ+ = κ
√

1 − y2

− . − .− 2D model, −κφ+ = 1
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