

Introduction	Model	Resolution	Experiments	Conclusions

INTRODUCTION

Doaré, Eloy, Sauzade, Mano

Introduction	Model	Resolution	Experiments	Conclusions

A CANTILEVERED PLATE IN AN AXIAL POTENTIAL FLOW BOUNDED BY TWO RIGID WALLS

At a critical velocity, plane state of the plate become unstable, flutter appears

Doaré, Eloy, Sauzade, Mano

Introduction	Model	Resolution	Experiments	Conclusions

2D problem (∞ spanwise, finite chordwise)

- Kornecki (1976), Huang (1995), Watanabe et al. (2002), Guo and Païdoussis (2000), Michelin et al. (2008,2009) : Theoretical/numerical critical velocity as function of the mass ratio.
- Experimentally, the critical velocity is always higher than that predicted by models.

3D FLOW AROUND A RECTANGULAR PLATE

- New parameter : Aspect ratio of the plate h = H/L.
- Eloy et al. (2007) : Good correspondence between experiments and theory is found, showing the great importance of three-dimensionality of the flow.

ヘロン 人間 とくほ とくほとう

Introduction	Model	Resolution	Experimen	ts Conclusions
How to A	APPROACH THE 2 I	DIMENSIONAL LIN	MIT ?	
INCREA	SE THE ASPECT RAT	TIO (SHORT FLAGS))	$\stackrel{L}{\vdash}$
 Whe that 	en $h \gg 1$, the critical vel predicted by 2D models	ocity predicted by 3D	models is	Н
Exp sucl	erimentally, 3D deforma n high aspect ratios	tion of the plate is obs	erved for	

Force the flow to be 2D by adding walls

- Few experimental data available, Aurégan and Dépollier (1995), Huang (1995). Even for confined flags, discrepancy is found.
- No theoretical models.

OBJECTIVES

- Quantify the phenomenon of confinement with a theoretical model
- Validate the model with experiments

The effect of spanwise confinement on the flutter instability of an elastic plate

= 990

ヘロト ヘ戸ト ヘヨト ヘヨト

Introduction	Model	Resolution	Experiments	Conclusions

MODEL

Doaré, Eloy, Sauzade, Mano

BEAM EQUATION WITH PRESSURE FORCES

$$M\frac{\partial^2 W}{\partial T^2} + D\frac{\partial^4 W}{\partial X^4} = \langle [P] \rangle \tag{1}$$

- $M \equiv$ surface density of the plate, $D \equiv$ flexural rigidity
- \triangleright $\langle [P] \rangle$ mean value along the span H of the pressure jump across the plate
- Boundary conditions : Beam clamped at X = 0, free at X = L

Doaré, Eloy, Sauzade, Mano

Introduction	Model	Resolution	Experiments	Conclusions

FINITE LENGTH FLAGS NON-DIMENSIONAL PARAMETERS (2D PROBLEM)

$$U^* = \sqrt{\frac{M}{D}} L U, \quad M^* = \frac{\rho L}{M}.$$
 (2)

GEOMETRICAL PARAMETERS OF THE 3D PROBLEM

- Aspect ratio : h = H/L
- ► Gap :

$$c = C/L \tag{4}$$

(3)

Doaré, Eloy, Sauzade, Mano

Introduction	Model	Resolution	Experiments	Conclusions

HIGH REYNOLDS NUMBER \rightsquigarrow POTENTIAL FLOW

LAPLACE EQUATION FOR THE PRESSURE

$$\Delta p = 0$$
(5)
$$p_{y}]_{|y|=h/2+c} = 0$$
$$[p_{z}]_{z=0} = -(\partial_{t} + \partial_{x})^{2}w$$
for $(x, y) \in$ flag

SOLUTION FOR THE PRESSURE IN INTEGRAL FORM

$$\frac{1}{2\pi} \int_0^1 \langle [\partial_x p] \rangle(\xi) G(x-\xi,h,c) \,\mathrm{d}\xi = (\partial_t + \partial_x)^2 w,\tag{6}$$

where

$$G(x,h,c) = \int_0^\infty \frac{\sin(kx)}{g(k,h,c)} \mathrm{d}k.$$
(7)

Doaré, Eloy, Sauzade, Mano

Introduction	Model	Resolution	Experiments	Conclusions

2D Helmoltz problem to find g

Helmholtz problem :

$$\Delta \varphi = \kappa^2 \varphi, \qquad (8)$$

$$\begin{aligned} |\varphi_y|_{|y|=1+d} &= 0, \quad (9) \\ [\varphi_z]_{z=0} &= 1, \quad \text{for } |y| < 1, \quad (10) \end{aligned}$$

• Function g:

$$g(\kappa, d) = -\frac{\kappa}{2} \langle [\varphi] \rangle = -\kappa \langle \varphi^+ \rangle.$$
 (11)

• Rescaling :
$$\kappa = kh/2$$
, $d = 2c/h$

Doaré, Eloy, Sauzade, Mano

Introduction	Model	Resolution	Experiments	Conclusions

RESOLUTION

Doaré, Eloy, Sauzade, Mano

Introduction	Model	Resolution	Experiments	Conclusions

NUMERICAL METHOD (GOOD FOR $\kappa < 1$)

- In practice e = 30 has been used
- Using symmetry w/r to the z-axis and skew-symmetry w/r to the y-axis
- Finite element software used (COMSOL)

Doaré, Eloy, Sauzade, Mano

Introduction	Model	Resolution	Experiments	Conclusions

Semi-analytical method (good for $\kappa > 1$)

- Green's representation theorem \rightsquigarrow solution for the potential φ in integral form
- Numerical resolution by expanding the solution over Chebychev polynomials of the second kind and projecting the equation on Chebychev polynomial of the first kind ~> linear system

イロン イ理シ イヨン イヨン

Ξ.

Ξ.

Doaré, Eloy, Sauzade, Mano

$$\bullet \ g_{LS}(\kappa,d)\simeq 1-\tfrac{1}{2\kappa}\left(1+\tfrac{0.18}{(\kappa d)^2}\right)^{-0.075},\quad \text{for }\kappa\gg 1.$$

- イロト イヨト イヨト - ヨー のへで

Doaré, Eloy, Sauzade, Mano

Introduction	Model	Resolution	Experiments	Conclusions

Slender body model ($\kappa \ll 1$)

$$g_{SB}(\kappa, d) \simeq \frac{\kappa \pi}{4} \left[1 + 0.805 \ln\left(\frac{d+0.189}{d}\right) \right]$$
(12)

LARGE-SPAN MODEL ($\kappa \gg 1$)

$$g_{LS}(\kappa, d) \simeq 1 - \frac{1}{2\kappa} \left(1 + \frac{0.18}{(\kappa d)^2} \right)^{-0.075}$$
 (13)

Composite extension \rightsquigarrow Empirical model for g

$$g_e(\kappa, d) = 1 - \left[\frac{1}{1 - g_{LS}} + \exp\left(g_{SB} - \frac{1}{1 - g_{LS}}\right)\right]^{-1},$$
 (14)

Doaré, Eloy, Sauzade, Mano

◆□> ◆□> ◆豆> ◆豆> ・豆・ 釣へ(?)

Doaré, Eloy, Sauzade, Mano

Introduction	Model	Resolution	Experiments	Conclusions
~				
STABILITY ANALYSIS				

METHODOLOGY [SAME AS IN ELOY ET AL. (2007,2008)]

- Inverse transform of $g \rightsquigarrow G$.
- Decomposition of the plate deformation on Galerkin modes (beam modes)
- \blacktriangleright Hypothesis of harmonic time dependence of the deformation at a complex frequency ω
- Pressure distribution associated with a given Galerkin mode sought in the form of a combination of Chebychev polynomials of the first kind.
- Integral equation for the pressure projected on Chebychev polynomials of the second kind ~ solution for the pressure corresponding to each Galerkin mode.
- ► Projection of the beam equation forced by pressure in the flow on Galerkin modes ~> linear eigenvalue problem.
- ► One eigenfrequency with a negative imaginary part ~→ instability.

10⁰

h

10¹

Doaré, Eloy, Sauzade, Mano

The effect of spanwise confinement on the flutter instability of an elastic plate

0 L 10⁻¹

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Doaré, Eloy, Sauzade, Mano

Introduction	Model	Resolution	Experiments	Conclusions

EXPERIMENTS

Doaré, Eloy, Sauzade, Mano

Introduction	Model	Resolution	Experiments	Conclusions
EXPERIMENTS				

Doaré, Eloy, Sauzade, Mano

Introduction	Model	Resolution	Experiments	Conclusions

EXPERIMENT 1 : FIXED CHANNEL, FIXED LENGTH PLATE, VARYING HEIGHT

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Doaré, Eloy, Sauzade, Mano

Introduction	Model	Resolution	Experiments	Conclusions
EXPERIMENT 2 ·	FIXED SIZE PI	ATE VARYING CH	IANNEL HEIGHT	

Doaré, Eloy, Sauzade, Mano

Introduction	Model	Resolution	Experiments	Conclusions

CONCLUSIONS

- 3D model for the pressure distribution in a flow bounded by two walls in the spanwise direction
- Stability analysis using this model
- Model validated by experiments
- Main result : the 2D limit is very difficult (impossible?) to achieve experimentally by bounding the flow in the spanwise direction

<ロ> < 四> < 回> < 回> < 回> < 回> <

Ξ.

IMPROVEMENTS

- Small gaps, confined flow ~> viscosity effects ?
- Effect of the confinement in the z-direction ?

Doaré, Eloy, Sauzade, Mano