Wall pressure fluctuations in a turbulent boundary layer

M. Stanislas, J. P. Laval

Ecole Centrale de Lille, CNRS Laboratoire de Mécanique de Lille

LABORATOIRE de MECANIQUE de LILLE UMR CNRS 8107

Turbulent boundary layer

 \Box , $R_{\theta} = 11500$; \blacktriangle , $R_{\theta} = 14800$; \bigcirc , $R_{\theta} = 20600$; ——, Van Driest profile.

UMR CNRS 8107

E.C. LILLE E.N.S.A.M.

Turbulence intensity components in a flat plate turbulent boundary layer, obtained from HWA. $\blacksquare Re_{\theta} = 20\ 800$, + Klebanoff (1955), *x* Erm & Joubert (1991), —DNS Spalart (1988).

Turbulence intensity components in a flat plate turbulent boundary layer, obtained from HWA. $\blacksquare Re_{\theta} = 20\ 800$, + Klebanoff (1955), —DNS Spalart (1988).

E.C. LILLE E.N.S.A.M. U.S.T.L.

Buffer layer

Streaks

Buffer layer

Vortices

 $F_d = f(u'(m, n, y^+), \sigma_u(y^+)) = \frac{u'(m, n, y^+)}{\sigma_u(y^+)}$

HR SPIV

Velocity

Hairpin vortices

de LILLE

3D Two points correlations

Large scales

$$R_{ij}(\overrightarrow{x}, \overrightarrow{dx}) = \frac{u_i(\overrightarrow{x}) \cdot u_j(\overrightarrow{x} + \overrightarrow{dx})}{\sqrt{u_i(\overrightarrow{x})^2} \cdot \sqrt{u_i(\overrightarrow{x} + \overrightarrow{x})^2}}$$

Poisson equation for pressure

$$\frac{\partial^2 p}{\partial x_i \partial x_i} = -\rho \frac{\partial}{\partial x_i} \left(\frac{\partial u_i u_j}{\partial x_j} \right).$$

$$p = P + p'$$
$$u = U + u'$$

$$\frac{\partial^2 p'}{\partial x_i \partial x_i} = -\left\{ 2 \frac{\partial U_i}{\partial x_j} \frac{\partial u_j}{\partial x_i} + \frac{\partial^2}{\partial x_i \partial x_i} \left(u'_i u'_i - \overline{u'_i u'_i} \right) \right\}$$
rapid rapid slow T^{MS}

Measurements & DNS

d+ < 30

Tsuji et al 2007

5 870 < Re_{θ} < 16 700 mixed scaling

Bradshaw (1967) **f**⁻¹

Tsuji et al 2007

 $5~870 < Re_{\theta} < 16~700$ PDF of pressure fluctuations

Figure 2 Instantaneous velocity and wall pressure field.

Ojeda (1996)

Pressure fluctuations

	LES7	DNS5	Kim et al. (1987)
$Re_{\tau} = u_{\tau}\delta/\nu$	171.8	179.8	~ 180
$u_{\tau}/U_o \times 10^2$	5.265	5.525	5.49
U_b/u_{τ}	16.29	15.57	15.63
U_o/U_b	1.17	1.16	1.16
δ^*/δ	0.1424	0.1396	0.141
θ/δ	0.0858	0.0858	0.087
$C_f imes 10^3$	7.54	8.25	8.18

Table I: Flow parameters for turbulence simulations

Chang (1998)

Figure 4.2: Total, MS and TT one-dimensional pressure spectra. π^{tot} ; π^{TT} ; \dots π^{MS} . (a) Streamwise, (b) spanwise.

Region	Limits	Description	
1	$0 \le y^+ < 5$	Viscous shear-layer	
2	$5 \leq y^+ < 30$	Buffer layer	
3	$30 \le y^+ < 180$	Logarithmic region	
4	$180 \leq y^+ < 360$	Upper channel	

Table I: Regions of the channel.

Chang (1998)

Figure 4.3: One-dimensional spectra of the total pressure for the various regions. All regions (R1234); viscous shear-layer (R1); viscous shear-layer (R2); viscous shear-layer (R1); viscous shear-layer (R1); viscous shear-layer (R2); viscous shear-layer (R2); viscous shear-layer (R2); viscous shear-layer (R1); viscous shear-layer (R2); viscous shear-la

E.C. LILLE

Chang (1998)

Figure 4.5: One-dimensional spectra of the MS pressure for the various regions.
 All regions (R1234); viscous shear-layer (R1); buffer layer (R2); --- logarithmic region (R3); -- upper channel (R4). (a) Streamwise, (b) spanwise.

Chang (1998)

Figure 4.6: One-dimensional spectra of the MS pressure for combinations of regions. — All regions (R1234); △ viscous shear-layer, buffer layer and logarithmic region(R123); + viscous shear-layer and buffer layer(R12) \circ buffer layer and logarithmic region(R23). (a) Streamwise, (b) spanwise.

LABORATOIRE de MECANIQUE de LILLE UMR CNRS 8107

Chang (1998)

Chang (1998)

http://www.dt.navy.mil/hyd/com-inv-wal/index.html#animations

Chang (1998)

	Wavenumber range					
Spectra	Lowest	Low	Intermediate	High		
	$k_x\delta < 1$	$1 < k_x \delta, k_z \delta < 5$	$5 < k_x \delta, k_z \delta < 30$	$30 < k_z \delta < 70$		
π^{MS}	2+3	2+3	1+2	1+2		
π^{TT}	1+2+3+4	1+2+3	1+2	1+2		

Table II: Regions of channel which dominate the MS and TT spectra. 1: viscous shear-layer; 2: buffer layer; 3: logarithmic region; 4: upper channel.

Flow with pressure gradient Comp. Domain

- Reynolds: $Re_{\tau} = 395$ at the inlet
- Domain: $4\pi \times 2 \times \pi$
- Resolution: $1536 \times 257 \times 384$

Pressure & friction

E.C. LILLE

Streaks

LABORATOIRE de MECANIQUE de LILLE UMR CNRS 8107

Double spatial correlation In the APG part of the DNS

p'_w**v**'₁

Double spatial correlation: FPG, APG, Channel

0.0

δx

0.5

Double spatial correlation: FPG, APG, Channel

δγ

0.4

0.2

0.0

-1.0

-0.5

0.000

Double spatial correlation: FPG, APG, Channel

X=+0.4

E.C. LILLE E.N.S.A.M. U.S.T.L

Double spatial correlation: FPG, APG, Channel

X= -1.

0.6 ≳ 0.4 0.2

1.0

0.8

0.0

-0.6

Channel

LML 2011 Experiment (Y. Naka)

de MECANIQUE de LILLE UMR CNRS 8107

Conclusion

• La turbulence de paroi est "relativement " bien connue en gradient de pression nul,

les fluctuations de pression à la paroi sont couplées à toute
l'épaisseur de la couche limite (particulièrement le terme lent),

- l'expérimentation est délicate et limitée,
- les DNS sont à faible Reynolds,
- l'influence du gradient de pression reste à étudier.

Michel Stanislas Javier Jimenez Ivan Marusic *Editors*

ERCOFTAC Series

Progress in Wall Turbulence: Understanding and Modeling

Proceedings of the WALLTURB International Workshop held in Lille, France, April 21–23, 2009

🙆 Springer

